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Preface

The fifth instance of the International Summer School GTTSE, GTTSE 2015, was held
in Braga, Portugal, August 23–29, 2015. For the first up to the fourth instance of
GTTSE, the acronym was expanded to “Generative and Transformational Techniques
in Software Engineering.” For the fifth instance, we adopted a broader scope also
hinting at an adjusted vision; GTTSE now stands for “Grand Timely Topics in Soft-
ware Engineering.” That is, historically, in the first four editions of GTTSE, the school
series focused on generative and transformational techniques in software engineering.
With the rise of the Software Language Engineering conference, the school series also
covered that field. As of the fifth edition, a broader scope is applied to include addi-
tional areas of software engineering, e.g., software analysis, empirical research, mod-
ularity, and product lines, as reflected by the new expansion of the GTTSE acronym.
The notion of timely topics is inspired by the ICSE conference, which, in some edi-
tions, features technical briefings as “a venue for communicating the current state of a
timely topic related to software engineering.”

The biannual, week-long GTTSE summer school brings together PhD students,
lecturers, as well as researchers and practitioners who are interested in timely topics in
software engineering. Given the community behind GTTSE, the program does not
cover software engineering in a perfectly balanced manner. Instead, there continues to
be a focus on language engineering, programming languages, modeling, and software
transformation.

The previous four instances of the school were held in 2005, 2007, 2009, and 2011
and their proceedings appeared as volumes 4143, 5235, 6491, and 7680 in Springer’s
LNCS series. There was no summer school edition in 2013.

The GTTSE 2015 program offered ten tutorials (“briefings”), three hours of plenary
time each, and a special tutorial on how to prepare for an interview in industry, one
hour of plenary time. All of these tutorials were given by renowned researchers in the
extended GTTSE community.

We adopted the notion of “briefing” in an effort to combine survey, research vision,
and tutorial regarding an important subject. GTTSE 2015 covered probabilistic pro-
gram analysis, ontologies in software engineering, empirical evaluation of program-
ming and programming languages, model synchronization, management of software
product families, “people analytics” in software development, DSLs in robotics,
structured program-generation techniques, advanced aspects of software refactoring,
and name binding in language implementation.

The program of the school also included a participants workshop (or students
workshop) to which all students had been invited to submit an extended abstract
beforehand. The Organizing Committee reviewed these extended abstracts, and invited
14 students to present their work at the workshop. The quality of this workshop was
exceptional, and two awards were granted by a jury of senior researchers that was
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formed at the school. Three of the participants responded to the call for contributions to
the proceedings; two of the submissions were accepted through peer review.

The program of the school and additional resources remain available online.1

In this volume, you can find revised and extended lecture notes for eight tutorials or
“briefings,” in the terminology of GTTSE 2015. Each of these lecture notes was
reviewed by three members of the Scientific Committee of GTTSE 2015. You will also
find two peer-reviewed participant contributions. Where necessary, two rounds of
reviewing were executed.

We are grateful to our sponsors for their support, and to all lecturers and participants
of the school for their enthusiasm and hard work in preparing excellent material for the
school itself and for these proceedings. Thanks to their efforts the event was a great
success, which we trust the reader finds reflected in this volume. Our gratitude is also
due to all members of the Scientific Committee, who not only helped with the
labor-intensive review process that substantially improved all contributions, but also
sent their most suitable PhD students to the school.

March 2017 Jácome Cunha
João P. Fernandes

Ralf Lämmel
João Saraiva

Vadim Zaytsev

1 http://gttse.wikidot.com/2015.
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Probabilistic Program Analysis

Matthew B. Dwyer1(B), Antonio Filieri2, Jaco Geldenhuys4, Mitchell Gerrard1,
Corina S. Păsăreanu3, and Willem Visser4

1 University of Nebraska – Lincoln, Lincoln, USA
dwyer@cse.unl.edu

2 Imperial College London, London, UK
3 Carnegie Mellon Silicon Valley and NASA Ames Research Center,

Santa Clara, USA
4 University of Stellenbosch, Stellenbosch, South Africa

Abstract. This paper provides a survey of recent work on adapting
techniques for program analysis to compute probabilistic characteriza-
tions of program behavior. We survey how the frameworks of data flow
analysis and symbolic execution have incorporated information about
input probability distributions to quantify the likelihood of properties of
program states. We identify themes that relate and distinguish a variety
of techniques that have been developed over the past 15 years in this
area. In doing so, we point out opportunities for future research that
builds on the strengths of different techniques.

Keywords: Data flow analysis · Symbolic execution · Abstract inter-
pretation · Model checking · Probabilistic program · Markov decision
processes

1 Introduction

Static program analyses calculate properties of the possible executions of a pro-
gram without ever running the program, and have been an active topic of study
for over five decades. Initially developed to allow compilers to generate more
efficient output programs, by the mid-1970s [29] researchers understood that
program analyses could be applied to fault detection and verification of the
absence of specific classes of faults.

The power of these analysis techniques, and what distinguishes them from
simply running a program and observing its behavior, is their ability to reason
about program behavior without knowing all of the details of program execu-
tion (e.g., the specific input values provided to the program). This tolerance of
uncertainty allows analyses to provide useful information when users don’t know
exactly how a program will be used.

Static analyses model uncertainty through the use of various forms of abstrac-
tion and symbolic representation. For example, symbolic expressions are used to
encode logical constraints in symbolic execution [46], to define abstract domains

c© Springer International Publishing AG 2017
J. Cunha et al. (Eds.): GTTSE 2015, LNCS 10223, pp. 1–25, 2017.
DOI: 10.1007/978-3-319-60074-1 1
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in data flow analysis [18,45], and to capture sets of data values that consti-
tute reachable states via predicate abstraction [36]. Nondeterministic choice is
another widely used approach, for instance, in modeling branch decisions in data
flow analysis. While undeniably effective, these approaches sacrifice potentially
important distinctions in program behavior.

Consider a program that accepts an integer input representing a person’s
income. A static analysis might reason about the program by allowing any integer
value, or, perhaps, by applying some simple assumption, i.e., that income must
be non-negative. Domain experts have studied income distributions and find
that incomes vary according to a generalized beta distribution [57,82]. With
such a distribution the program can now be viewed as a probabilistic program
and, beginning with Kozen’s seminal work in the early 1980s, the semantics of
such programs has long been studied [44,47,48,62].

For non-probabilistic programs, it was just over six years from Floyd’s foun-
dational work on program semantics [28] to Kildall’s widely-applicable static
analysis framework [45]. Sophisticated extensions of Kildall’s work are preva-
lent today, e.g., [51,52], and form the basis for modern software development
environments. For probabilistic programs, however, the development of static
analysis frameworks has taken decades and they have not yet reached the level
of applicability of their non-probabilistic counterparts.

What would such analyses have to offer? Researchers have explored the use
of probabilistic analysis results to assess the security of software components [56]
and to measure side-channel leakage [3,65], to assess program reliability [26], to
measure program similarity [31], to characterize fault propagation [63], and to
characterize the coverage achieved by an analysis technique [21]. We believe that
there are many more applications for cost-effective and widely-applicable static
analysis frameworks for probabilistic programs.

In recent years, the term “probabilistic program” has been generalized
beyond Kozen’s definition in which programs draw inputs from probability distri-
butions. This more general setting permits the conditioning of program behavior
by allowing certain program runs to be rejected. These programs can be viewed as
expressing computations over probability distributions rather than inputs drawn
from a distribution. While recent work has just begun to explore the founda-
tions of analysis for this more general setting [15,35], in this paper we consider
Kozen’s original definition and analysis frameworks targetting such programs.

More specifically, we survey work on adapting data flow analysis and symbolic
execution to use information about input distributions. We begin with back-
ground that provides basic definitions related to static analysis and probabilistic
models. Section 2.2 exposes some of the key intuitions and concepts that cross-
cut the work in this area. The following two Sects. 3.1 and 3.2, survey work on
probabilistic data flow analysis and probabilistic symbolic execution. While we
focus on analysis of imperative programs, we note that principles exposed in our
survey apply to analysis frameworks for functional programs as well. Section 3.3
discusses approaches that have been developed to reason about the probability
of program-related events, e.g., executing a path, taking a branch, or reaching a
state. We conclude with a set of open questions and research challenges that we
believe are worth pursuing.
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2 Overview

2.1 Scope and Background

This paper focuses on programs that draw input variables from given probabil-
ity distributions, or, equivalently, that make calls on functions returning values
drawn from given distributions. The left side of Fig. 1 shows a method, m, that
we will use to illustrate concepts in this paper. It takes an integer variable, x, as
input, then based on the results of drawing values from a Bernoulli distribution,
it either performs its computation (which is unspecified and denoted with...)
or triggers an assertion. For the example, we might be interested in reasoning
about the lack of assertion violations.

Fig. 1. Example: source code (left) and control flow graph (right)

Fig. 2. Probabilistic choice (left) and symbolic choice (right)

Programs and Program Analyses. There are many different ways to rep-
resent the execution behavior of a program to facilitate analysis. Immediately
to the right of the code in Fig. 1, we show the control flow graph (CFG), which
explicitly represents control successor relationships between statements. A CFG
models choice among successors as nondeterministic choice – depicted by the
lack of labels on the edges.

We will also consider models that include probabilistic choice, e.g., defining the
probability that a branch is taken. The left side of Fig. 2 shows edge probabilities
that reflect the outcome of the Bernoulli draw on line 2. Thus the probability of
taking the then branch is 0.5; the probability of taking the else branch is also 0.5.
In addition, we will consider models where the choice of successor is defined by the
semantics of the branch condition. The right side of Fig. 2 shows a logical condition
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that reflects the fact that the value of parameter x must be less than or equal to
60 for control to traverse the true branch at line 4.

A key concept in the program analysis frameworks we survey is symbolic
abstraction. A symbolic abstraction is a representation of a set of states. Abstrac-
tions can be encoded in a variety of forms, e.g., logical formulae [79], binary
decision diagrams [10], or custom representations [2]. For example, the set of
negative integer values can be defined by a predicate lt0 ≡ λx.x < 0 which
returns true for all values in the set. Logical combinations of such predicates
can be used to define an abstract domain, A, whose elements describe sets of
possible states of the program.

While abstractions encode sets of states, abstract transformers compute the
effect of a program statement on a set of states. For example, the fact that the
sum of any pair of negative values is negative is encoded as lt0+#lt0 = lt0, where
# denotes an abstract transformer for + that operates on symbolic encodings
of sets.

Analyses that seek to prove the satisfaction of properties generally define
abstractions that overapproximate the set of program states, whereas those that
seek to falsify properties generally define abstractions that underapproximate the
set of program states.

Data Flow Analysis. Data flow analysis [45] provides a framework for comput-
ing properties shared by sets of program traces reaching a program state. It is
common for such analyses to group together the states that share a common
control location; the computed properties attempt to characterize the invariants
over those states.

Data flow analyses are solved using a fixpoint computation which allows
properties of all program paths to be safely approximated. Model checking [16]
is a popular verification technique which also relies on an underlying fixpoint
computation. Moreover, data flow analyses operate on symbolic abstractions of
program states that can be defined by abstract interpretation [18]. In fact, it is
now well-understood that data flow analysis can be viewed as model checking of
abstract interpretations [75].

An abstract interpretation is a non-standard interpretation of program execu-
tions over an abstract domain. The semantics of program statements are lifted
to operate on a set of states, encoded as an element of the abstract domain,
rather than on a single concrete state. Generating the set of traces for non-trivial
programs is impractical; instead, abstract states can be combined, via a meet
operation, wherever traces merge in the control flow, and loops are processed
repeatedly to compute the maximum fix point (MFP).

Data flow analysis tools and toolkits exist for popular languages, e.g., [27,
52,84], and have been used primarily for program optimization and verifying
program conformance with assertional specifications.

Symbolic Execution. Like data flow analysis, symbolic execution [17,46] per-
forms a non-standard interpretation of program executions using a symbolic
abstraction of program states. Symbolic execution records symbolic expressions
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encoding the values of program memory for each program location. A path con-
dition accumulates symbolic expressions that encode branch constraints taken
along an execution.

Sequences of program statements are interpreted by applying the operation at
each program location to update the values of program variables with expressions
defined over symbolic variables. An operation that reads from an input generates
a fresh symbolic variable which represents the set of possible input values. When
a branching statement is encountered, the symbolic expression, c, encoding the
branch condition is computed and a check is performed to determine whether
the current trace—encoded by the path condition—can be extended with c or
c’s negation. This is done by formulating the constraints as a satisfiability query;
if the formula encoding branch constraints is satisfiable, then there must exist
an input that will follow the trace. The trace is extended following the feasible
branch outcomes, usually in a depth-first manner.

In the example of Fig. 1, on the leftmost path through the control flow graph,
when symbolic execution reaches the final branch it records the condition X ≤
60, where X models the unknown value of input x. This condition describes the
set of input values that trigger execution of this path—as long as both Bernoulli
trials yield a value of 1.

In practice symbolic execution computes an underapproximation of program
behavior. Programs with looping behavior that is determined by input values
may result in an infinite symbolic execution. For this reason, symbolic execu-
tion is typically run with a (user-specified) bound on the search depth, thus
some paths may be unexplored. Moreover, there may be path constraints for
which efficient satisfiable checking is not possible. Variants of symbolic execution
[34,76,78], called concolic execution, address this problem by replacing problem-
atic constraints with equality constraints between variables and values collected
while executing the program along the trace.

Symbolic execution tools and toolkits exist for many popular languages
[11,34,41,66] and have been used primarily for test generation and fault
detection.

Probabilities and Probabilistic Models. There is an enormous literature
on probabilistic reasoning and statistics that can be brought to bear in pro-
gram analysis. In this paper, we consider two types of discrete time probabilistic
models: Markov chains and Markov decision processes [69].

Both models rely on the concept of a probability distribution. A probability dis-
tribution is a function that provides the probability of occurrence of different pos-
sible outcomes in an experiment. The sum of the probabilities for all outcomes is 1.

A Markov chain is a labeled transition system that, given some state, defines
the probability of moving to another state, according to a probability distrib-
ution. The probability of executing a sequence of states is then the product of
the transition probabilities between the states. The model fragment in the upper
right corner of Fig. 1 depicts a Markov chain fragment. It defines, for the set of
states that are at the first line in the program, a 0.5 probability of transitioning
to the state representing the beginning of the then block, and similarly for the
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beginning of the else block. The distribution indicates a 0 probability of moving
to any other state.

For this small example, if we were to assume a probability distribution on
the input x, then it would be possible to compute the probability of taking every
edge in the CFG. This would be a Markov chain model of m and it would replace
all nondeterministic choices in the CFG with probabilistic choices.

There are many situations where the removal of nondeterministic choices is
impractical or undesirable. For example, if the input distribution of x is unknown,
then retaining nondeterministic choices for the conditionals which test that value
would yield a faithful program model. In addition, it may be desirable, for effi-
ciency of analysis, to abstract program behavior, and that abstraction may make
it impossible to accurately compute the probability of a transition.

Including nondeterminism in a probabilistic state transition model yields a
Markov decision process (MDP). An MDP adds an additional structure, A, that
defines a set of (internal) actions which are used to model the selection among a
set of possible next-state probability distributions. When traversing a path in an
MDP, in each state, a choice from A must be made in order to determine how to
transition, probabilistically, to a next state. That sequence of choices is termed
a policy for the MDP. Given a policy, an MDP reduces to a Markov chain.

2.2 Extending Program Analyses with Probabilities

The literature on incorporating probabilistic techniques into program analysis is
large and growing, technically deep, and quite varied. In this paper, our intention
is to expose key similarities and differences between families of approaches and,
in so doing, provide the reader with intuitions that are often missing in the
detailed presentation of techniques.

Where Do the Probabilities Come From? There are two perspectives
adopted in the literature. Programs are implicitly probabilistic because the dis-
tributions from which input values are drawn are not specified in the program,
but are characteristics of the execution environment. Alternately, programs are
explicitly probabilistic in that the statements within the program define the
input probability distributions.

It is possible to transform explicit probabilistic constructs by introducing
auxiliary input variables and then specifying their distributions. For the example,
this would result in the addition of two integer input variables

m(int x, int b1, int b2) {...
where the two instances of drawBernoulli(0.5) expressions would be replaced
by b1 and b2, respectively. The input distribution for each auxiliary input would
then be specified as a set of pairs, {. . . , (−1, 0), (0, 0.5), (1, 0.5), (1, 0), . . .} where
the first component defines a value and the second defines its probability.

Section 3.1 discusses approaches where probabilities governing specific branch
outcomes, as opposed to input values, are built into the program model from
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knowledge the developer has at hand, while Sects. 3.2 and 3.3 describe techniques
for computing such probabilities from information about the program semantics
and input distribution.

What Does the Analysis Compute? There are again two perspectives
adopted in the literature. One can view a probabilistic program as a transformer
on probability distributions; the analysis computes the probability distribution
over the concrete domain which holds at a program state. Alternatively, one
can view a probabilistic program as a program whose inputs happen to vary in
some principled way; the analysis computes program properties—properties of
sets of concrete domain elements—along with a characterization of how these
properties vary with varying input. Within these approaches, there are different
types of approximations computed for probabilities. It is common to compute
upper bounds on probabilities for program properties, but lower bounds can be
computed as well. In addition, it is possible to estimate the probability within
some margin of error—an approach that several techniques explore—and it is
even possible to compute the probability exactly, if certain restrictions hold on
the program and its distributions.

Conceptually, there are two pieces of information that are necessary to rea-
son probabilistically about a set of values: a quantity that approximates the
probability of each value in the set and the number of values in the set. Early
probabilistic static analysis techniques did not explicitly capture this latter quan-
tity, but more recent work discussed in Sect. 3.2, using the techniques of Sect. 3.3,
does capture this quantity, as do other recent approaches [56].

Mixing Abstraction with Probabilities. Any analysis that hopes to scale
will have to approximate behavior. As explained earlier, in static analyses it is
common to model such overapproximation using nondeterministic choice. Across
all of the analysis techniques we survey, MDPs have been used when there is
a need to mix probabilistic and nondeterministic choice. An important conse-
quence of using MDPs is that it is no longer possible to compute a single proba-
bilistic characterization of a property. Instead, analyses can compute, across the
set of all possible sequences of nondeterministic choice outcomes, the minimal
and maximal probabilities for a property to hold.

3 Probabilistic Approaches to Program Analysis

This section introduces probabilistic variants of data flow analysis and symbolic
execution. Several of these variants either exploit, or could be adapted to exploit,
recent advances in methods for quantifying or estimating constraint solution
spaces which we discuss at the end of this section.
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3.1 Probabilistic Data Flow Analysis

The key challenge in probabilistic data flow analysis is determining how proba-
bilities are incorporated into the control and data abstractions upon which it is
based.

Control Flow Probabilities. Early work in extending data flow analysis tech-
niques with probabilities did not consider the influence of control and data flow
on probabilities. Instead, user-defined probabilities were attached to nodes in the
program’s control flow graph. This allowed the analysis to estimate the proba-
bility of an expression evaluating to some value or type at runtime, which was
used to enable program optimization.

This approach begins with a control flow graph where each edge is mapped
to the probability that it is taken during execution. The left side of Fig. 3 shows
the probabilistic CFG for the example of Fig. 1, given that input x is uniformly
distributed in the range [1, 100]. This program is simple enough that the branch
probabilities can be easily computed—because the probabilities for each branch
along a path are independent.

The sum of all probabilities leaving any control flow node must be 1 (except
for the exit node). The probability of executing a path is the product of edge
probabilities along the path. Thus, the probability of reaching a program state
is the sum of the probabilities of traces that reach that state.

Fig. 3. Probabilistic CFG (left) and MDP (right)

To compute the probability of a data flow fact holding at a program point,
Ramalingam uses a slightly modified version of Kildall’s dataflow analysis frame-
work [70]. Instead of the usual semilattice with an idempotent meet operation,
a non-idempotent addition operator is used. The usual properties of the meet
operation can be relaxed, because instead of computing an invariant dataflow
fact, we only want the summation of probabilities of all traces reaching a cer-
tain point. The expected frequencies may now be computed as the least fixpoint
using the traditional iterative data flow algorithm; the quantity becomes a sum-
over-all-paths instead of a meet-over-all-paths.
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Ramalingam’s sum-over-all-paths approach is reminiscent of the approach
taken in probabilistic model checking of Markov chains. In the latter app-
roach, a system of equations is formulated whose solution yields the probabil-
ity of some property holding—so-called quantitative properties in PRISM [49].
Ramalingam’s analysis effectively solves an equivalent system of equations.

These techniques rely on being able to annotate branch decisions in the
program with probabilities. When the input distributions governing branches
is unknown or when the branches along a path are dependent the techniques
described above cannot be applied. The discussions below on non-determinism
and in Sects. 3.2 and 3.3 describe ways to address this problem.

Abstract Data Probabilities. Researchers have incorporated probabilistic
information directly into the semantics of a program and then abstracted over
those semantics [19,59,77] to construct probabilistic data flow analyses. This is
typically done using a variation on Kozen’s probabilistic semantics [47] alongside
abstract interpretation and data flow techniques. Embedding probabilities into
the semantics allows both control flow and data values to influence the property
probabilities computed during the analysis.

Abstracting Probability Distributions. The pioneering work in this area, by Mon-
niaux [59,60], developed the key insights that other work has built on. The goal
is to exploit the rich body of work on developing abstract domains and associ-
ated transformers, and to extend this work so as to record bounds on probability
measures for the concrete values described by domain elements.

Monniaux’s work takes the view that probabilistic programs effectively trans-
form an input distribution into an output distribution. More generally, proba-
bilistic programs compute a distribution that characterizes each state in the
program. He develops a probabilistic abstract domain, Ap, as a collection of
pairs, A × [0, 1]. The intuition is that a classic abstract domain is paired with a
bounding probability weight that is used to compute an upper bound on the values
mapped by that domain. Consider a probabilistic abstract state, pa ∈ A× [0, 1],
an upper approximation of the probability of a value v in that state is given by
Pr(v) ≤ ∑

(a,w)∈pa∧c∈γ(a) w, where γ is maps a symbolic abstraction to the set
of values it describes.

In Monniaux’s work, multiple abstract domain elements can map onto a
given concrete value; each of these abstract domain elements’ weights must be
totalled to bound the probability of the given concrete value. As an example,
let A be the interval abstraction applied to a single integer value and let pa =
{([1, 5], 0.1), ([3, 7], 0.1), . . .}. For a value of 2, only the first pair would apply,
since 2 �∈ [3, 7], contributing 0.1 to the bound on Pr(2). For a value of 3, both
pairs would apply and contribute their sum of 0.2 to the bound on Pr(3).

To clarify, these weight components are not bounds on the probability of
the abstract domain as a whole, but rather are bounds on the probability
of each concrete element represented by the abstract domain. This simplifies
the formulation of the probabilistic abstract transformers, e.g., the extension
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of +# to account for Ap, but it means that additional work is required to com-
pute the probability of a property holding. In essence, this requires estimating
the size of the concretization of the abstract domain element and then multiply-
ing by the computed bound for each concrete value.

It is important to note that an upper or lower bound on a probability distrib-
ution is not itself a distribution, since the sum across the domain may be greater
than 1. This poses challenges for modular probabilistic data flow analyses.

We will see that the techniques from Sect. 3.3 can be applied to the problem
of counting the concretization of an abstract domain element that is encoded as a
logical formula. This may offer a potential connection between data flow analyses
formulated over distributions and those formulated over abstract states—which
we discuss below.

The design of probabilistic abstract transformers can be subtle. For state-
ments that generate variables drawn from a probability distribution, an upper
approximation of the distribution for regions of the abstract domain is required.
For sequential statements, weight components are propagated and abstract
domain elements are updated by the underlying transformer.

For conditionals, the transformer can be understood as filtering the abstract
domain between those execution environments which satisfy the conditional
and those which falsify the conditional. The probabilistic abstract transformer
need only apply that filter to the first component of the tuple (the elements of
the underlying abstract domain), leaving the weight unchanged. For instance,
consider the abstract domain of an interval of integers defined by the tuple,
([−5, 5], 0.1). If this domain holds before a conditional if(x < 0){...}, then apply-
ing the filter on the true branch results in ([−5,−1], 0.1) and applying the filter
on the false branch results in ([0, 5], 0.1). The space is reduced; the weights
remain the same.

Finally, reaching fixpoints for rich probabilistic abstract domains appears to
require widening [22,59] to be cost-effective. These can be challenging to define
and, generally, lead to a loss in precision.

Probability for Abstract States. Computing bounds on the probability of a state
property has been well-studied. Di Pierro et al. [20] develop analyses to estimate
the probability of an abstract state, rather than bound it or its probability
distribution. They formulate their analysis using an abstract domain over vector
spaces, instead of lattices, and use the Moore-Penrose pseudo-inverse instead of
the usual fixpoint calculation.

Abstract states encode variable domains as matrices, e.g., a 100 by 100 matrix
would be needed to encode the input x for the example in Fig. 1. While very
efficient matrix algorithms can be employed, the space consumed by this repre-
sentation can be significant when scaling to real programs. Transfer functions
operate on these matrices to filter values and update probabilities along branches
and, as in Ramalingam’s work, weighted sums are used to accumulate probabil-
ities at control flow merge points. Di Pierro et al.’s early work was limited to
very small programs, but more recent work suggests approaches for abstracting
the matrices to significantly reduce time and space complexity.
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Handling Nondeterminism. When abstraction of program choice is required
or when there is no basis for defining an input distribution, it is natural to use
nondeterminism to account for the uncertainty in program behavior.

In Monniaux’s semantics [61] choices that can be tied to a known distrib-
ution are cleanly separated from those that cannot. A nondeterministic choice
allows for independent outcomes, and this is modeled by lifting the singleton
outcomes of deterministic semantics to powersets of outcomes. In the proba-
bilistic setting, the elements of this powerset are tuples of the abstract domain
and the associated weight, defined above. So for any nondeterminstic choice, the
resulting computation is safely modeled by one of these tuples. The challenge in
the analysis is to select from among those tuples to compute a useful probability
estimate.

More recent work on abstraction in probabilistic data flow analysis, as well
as in model checking, takes a different approach. In the MDP on the right side
of Fig. 3 α and β are used to denote the outcomes of nondeterministic choices—
modeling for instance unknown branch conditions—and their values comprise
the MDP policy. There are three policies for this example: (α, β), (α,¬β), and
(¬α). For a given program state, we can formulate an alternating game that seeks
to determine values for α and β which maximize (or minimize) the probability
of reaching that state. Probabilistic model checkers such as PRISM and PASS
use this approach to formulate MDP-based analyses.

The reachability of line 5 in the MDP is only possible under the policy (α, β).
Thus, that policy maximizes the probability of reaching that state at 0.6—the
product of the probabilities along the path. Any other policy will minimize the
probability of reaching line 5 at 0. Bounding the probability of violating an
assertion in a call to m requires considering all three policies. The maximal
probability is 0.7 under policy (α,¬β), whereas the minimal probability is 0.4
under policy (α, β).

Abstract interpretation can be applied to the data states in such
approaches [22,50,86] to improve efficiency. These abstractions are, however,
independent of the probabilistic choices implicit in the semantics, and must be
specified by the developer in some way—as in the case of Ramalingam’s work.

Theoretical advances in the analysis of stochastic processes [68] and coal-
gebraic semantics [38,64] may provide new pathways towards the definition of
more advanced analysis methods that combine nondeterministic and probabilis-
tic choice.

3.2 Probabilistic Symbolic Execution

Probabilistic symbolic execution extends traditional symbolic execution with the
ability of computing probabilities of reaching certain target states in a program.
The computation is based on quantifying the solution spaces of the path condi-
tions computed by symbolic execution.

We illustrate probabilistic symbolic execution using the example in Fig. 4,
where we introduce variables b0 and b1 to model the two drawBernoulli distri-
butions from Fig. 1; the domains of those variables consist of 10 values and the
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Fig. 4. Illustration of probabilistic symbolic execution

tests check for half of the domain, corresponding to the 0.5 parameter in the
Bernoulli distribution. Note that this program now has 3 inputs and an input
domain size of 10×10×100 = 10000. The domain of variables, which is finite and
discrete, is denoted by D. Figure 4 illustrates the six symbolic paths generated
by a symbolic execution of the example program. The path condition describing
each path is the conjunction of the constraints along the path; for example the
leftmost path will have b0 < 5 ∧ b1 < 5 ∧ x ≤ 60 as its path condition.

Algorithm 1. pse(l,m, pc)
repeat

p ← symsample(l0, m0, true)
processPath(p)

until stoppingSearch(p)

Algorithm 2. symsample(l,m, pc)
if stoppingPath(pc) then

return pc
end if
while ¬branch(l) do

m ← op(l)(m)
l ← succ(l)

end while
c ← cond(l)(m)
if selectBranch(c, pc) then

return symsample(succt(l), m, pc ∧ c)
else

return symsample(succf (l), m, pc ∧ ¬c)
end if
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Algorithm pse (Algorithm 1) illustrates probabilistic symbolic execution; it is
a modification of traditional symbolic execution to process symbolic paths one
at a time using procedure symsample. The selection of each path can be done
systematically (e.g. using depth-first search as in traditional symbolic execution)
or statistically, guided by branch probabilities as in [24]. Our description accom-
modates many of the advances in the recent literature [24,26]. The processing
of each path involves the calculation of probabilities as described in the next
section.

At a high level, procedure symsample is called from the initial state of the
program; it returns a single path which is then processed. After each path,
procedure stoppingSearch is called to check if the analysis is complete or some
other termination criterion is met, and the analysis can stop. Within procedure
symsample we first check if the search for a path needs to be stopped; otherwise,
we symbolically execute the program up to the next branching point and decide
which of the next branching statements must be taken.

Procedure stoppingPath uses a stopping criterion (limit on search depth) to avoid
exploration of infinite or very long paths, that are due to loops conditioned on
input variables. Since some paths might now be truncated before reaching a
target property, we introduce three types of paths, (1) success paths, which reach
and satisfy the target property, (2) failure paths, which reach and falsify the
property, and (3) grey paths, which are truncated before reaching the property.
These paths form three disjoint sets; we calculate the cumulative probability of
success Pr(success) (i.e., the reliability of the code), failure Pr(failure) and grey
paths Pr(grey). Grey paths can be handled optimistically (grouped with the
success paths), pessimistically (grouped with the failure paths) or kept separate
and be used as a measure for how confident we are in our estimates (for example,
if the grey paths probability is very low, we are more confident).

Procedure selectBranch selects which branch to execute next; this can be done
either systematically or probabilistically, according to the probability of satisfy-
ing the corresponding branch conditions. This is computed based on the number
of solutions for each path condition as follows. At each branching point, we count
the number of solutions for the path condition at that branching point (�(pc))
and the number of solutions for the path condition for both branches (�(pc ∧ c)
and �(pc ∧ ¬c)). Assuming a uniform distribution of the inputs, the probability
for the true branch is then simply Pr(succt(l)) = �(pc ∧ c)/�(pc); similarly for
the false branch, Pr(succf (l)) = �(pc ∧ ¬c)/�(pc). Techniques for counting the
number of solutions are discussed in Sect. 3.3.

In the example of Fig. 4, when we sample probabilistically at node 3, we have
that the path condition at the node is pc = b0 < 5 ∧ b1 < 5 and �(pc) = 2500.
The true branch (b0 < 5 ∧ b1 < 5 ∧ x ≤ 60 with a count of 1500) will thus be
taken with probability 1500/2500 = 0.6 and the false branch will be taken with
probability 0.4.
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Procedure processPath calculates the probability for the path being processed
and checks whether the path falls into the success, failure or grey set. Note
that many of these calculations have already been performed during the
selectBranch, and caching can be used to eliminate redundant work.

Again in the example of Fig. 4, the paths ending at the labels A′, B′

and C ′ indicate assertion failures, and thus the probability of failure will be
1500/10000 + 1750/10000 + 2250/10000 = 0.55. Since there are no loops in the
example, the rest of the paths indicate success, which will have probability 0.45.

Furthermore, the procedure can handle sampling without replacement—to
guarantee an exhaustive analysis even when certain behaviors have very small
probability. In [24] we describe how we leverage the counts we store for each path
condition to ensure no path is sampled twice. Whenever a path has been explored
completely, we subtract the final path condition count from all the counts along
the current path back up to the root. Note that these counts are being used by
selectBranch to calculate the conditional probabilities at a branch, and thus they
change with each sample. If a count becomes zero, the corresponding branch will
no longer be selected. The more paths of the program are analyzed, the more
counts propagate up the tree until the root node’s count becomes zero, at which
point all paths have been explored.

Procedure stoppingSearch uses either a measure of confidence based on the per-
centage of the input domain that has been explored, or it uses a statistical
measure of confidence. Enough confidence exists about the portion of the input
domain that has been analyzed when 1 − Pr(success) + Pr(failure) < ε. If we
treat grey paths separately, this means Pr(grey) < ε. The parameter ε is pro-
vided by the user, and is typically very small. Note that although we show, for
simplicity, that procedure stoppingSearch takes the path as input, in practice it
just reuses the results computed by procedure processPath.

Handling Nondeterminism. Handling nondeterminism within the systems
being analyzed has been studied in previous work [26] in the context of scheduling
choices in concurrent programs. The approach was to determine the schedule
giving the highest (or lowest) reliability. More recently, an approach based on
value iteration learning was presented [54] to handle the problem in a more
general fashion.

3.3 Computing Program Probabilities

Computing probabilities for probabilistic symbolic execution and other program
analyses reduces to computing the probability of satisfying a boolean constraint
over the program variables. This operation is performed within the selectBranch
function. Given the path condition PC reaching a branching point and the con-
dition c of the conditional statement, the goal is to compute the probability of
satisfying PC ∧ c and, consequently, PC ∧¬c. Depending on the theory the con-
straints are expressed in, different techniques can be used to quantify the solution
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space of the constraints and, in turn, their probability of being satisfied. In this
section introduce the basics of some of these techniques.

Assume the program under analysis has input variables V = {v1, v2, . . . , vn},
where vi has domain di and comes with a probability distribution Pi : di → [0, 1].
The input domain D is the Cartesian product of the domains di, while the input
distribution P is the joint distribution over all the input variables

∏
i Pi(v̄i). For

a constraint φ : V → {true, false}, the goal is to compute the probability Pr(φ)
of satisfying φ given the input domains and probability distributions.

Exact and Numeric Computation

Finite domains. If the input domain is finite, the computation of Pr(φ) reduces
to a counting problem as already mentioned (assume for now all inputs are
uniformly distributed, i.e. they are equally likely):

Pr(φ) =
�(φ ∧ D)

�(D)
(1)

Here �(·) counts the number of inputs satisfying the argument constraint; D
has been overloaded to represent the finite domain as a constraint; �(D) is a
short form for the size of the domain1. For example, considering a single integer
input variable x taking values between 1 and 10 uniformly, �(D) = 10 and
�(x ≤ 5 ∧ D) = 5, leading to a 0.5 probability of satisfying the constraint.

The computation of �(·) can be performed efficiently for linear integer arith-
metic (LIA) constraints. A LIA constraint defines a multi-dimensional lattice
bounded by a convex polytope [5]. To count the number of points composing
this structure, an efficient solution has been proposed by Barvinok [4]. This
algorithm uses generating functions suitable for solving the counting problem in
polynomial time, with respect to the number of variables and the number of con-
straints. Notably, besides the number of bits required to represent the numerical
values, the complexity of this algorithm does not depend on the actual size of
the variable domains. This makes the computation feasible for very large input
domains, allowing its application to probabilistic program analysis [23,26,31].
Several implementations of this algorithm are available, the most popular being
LattE [83] and Barvinok [85].

Other finite domains, such as bounded data structures [23] and regular lan-
guages [1,55], are active topics of study in applied model counting. The problem
of counting the number of distinct truth assignments for a propositional formula
is called #SAT, or propositional model counting. There are a number of tools
that can efficiently solve many cases of #SAT, including sharpSAT [81] and
Cachet [74].

1 More precisely, Eq. (1) represents the probability of satisfying the constraint φ con-
ditioned on the fact that the input is within the prescribed domain D.
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Handling input distributions. For finite domains, assume, without loss of gener-
ality, the input distribution to be specified on a finite partition D1,D2, . . . , Dn

of the input domain D (i.e., ∪iD
i ≡ D and Di∩Dj �= ∅ =⇒ i = j) via the prob-

ability function Pr(Di). Assume elements within the same set Di to have the
same probability. The case of uniform distribution described so far corresponds
to the partition with cardinality 1, i.e., the whole domain.

Since the elements of the partition are disjoint by construction, we can exploit
the law of total probability to extend Eq. (1) to include the information about
the input distribution:

Pr(φ) =
∑

i

�(φ ∧ Di)
�(Di)

· Pr(Di) (2)

Here Di has again been overloaded to represent the constraint of an element
belonging to Di.

Formalizing the input distribution on a finite partition of the input domain is
general enough to capture every valid distribution on the inputs, including possi-
ble correlations or functional dependencies among the input variables. However,
the finer the specification of the input distribution, the more complex the com-
putation of Eq. (2).

Floating-point numbers. Floating-point numbers are often abstracted as real
numbers for analysis purposes. Computing the probability of satisfying a con-
straint over reals requires refining Eq. 1 to cope with the density of the domain.
In particular, the counting function �(φ) is replaced by the integration of an
indicator function on φ, i.e., a function returning 1 for all the inputs satisfying φ
[9]. This integration can be performed exactly only when symbolic integration is
possible, but in general only numerical integration is possible. A number of com-
mercial and open-source tools can be used for this purpose. However, numerical
computations are accurate only up to a certain bound, and they do not scale to
large cardinalities. In the latter case, sampling-based methods are preferable.

Sampling-Based Methods. Exact methods can suffer from two main limita-
tions: (1) generality with respect to input domains and constraint classes and
(2) scalability, either due to the intrinsic complexity of the algorithm used or to
the discretization of the input distributions. Sampling-based methods may be
used to address these limitations.

In this section we will present sampling-based methods for quantifying the
probability of satisfying arbitrarily complex floating-point constraints. We will
briefly discuss how to generalize to other domains at the end of the section.

Sampling-based methods estimate the probability of satisfying a given con-
straint using a Monte Carlo approach [72]. For simplicity, we will focus on the
simplest, though general, method suitable for our purpose: hit-or-miss Monte
Carlo.
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Hit-or-miss Monte Carlo. We assume first a uniform input distribution over
bounded, real domains (we relax this assumption later). Consider the constraint
x ≤ −y ∧ y ≤ x, where both x, y ∈ [−1, 1] ∩ R. In probabilistic terms, this can
be seen as a Bernoulli experiment, i.e., an experiment having only two mutually
exclusive outcomes, true or false, where the probability of the true outcome
is the parameter p of a Bernoulli distribution [67] (the probability of the false
outcome is in turn 1−p). Our goal is to estimate the parameter p, from n random
samples over the input domain.

Figure 5 plots the solution space for the example constraint (x and y on the
x- and y-axis, respectively); the value p we aim to estimate is the ratio between
the shadowed area, enclosing all the points satisfying the constraint, and the
input domain (i.e., the outer box).

Fig. 5. Sampling-based solution space quantification for x ≤ −y ∧y ≤ x, x, y ∈ [−1, 1].

The hit-or-miss Monte Carlo method consists in taking n independent ran-
dom samples uniformly within the domain; if a sample si satisfies the constraint,
we assign si = 1, otherwise, si = 0. This process is called a Binomial experiment
with n samples. The maximum likelihood estimate for p is then p̂ [67]:

p̂ =
∑n

i=1 si

n
σ(p̂) =

√
p̂ · (1 − p̂)

n
(3)

The right part of Eq. (3) shows the standard deviation σ of p̂ [67]. The standard
deviation is an index of the convergence of the estimate. Notably, it decreases
with the square root of the number of samples; when the number of samples
grows to infinity, the standard deviation goes to 0, making the estimation con-
verge to the actual value of p.
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Despite the convergence of p̂ to p can be proved only in the limit, given the
value of p̂, its standard deviation σ, and a desired confidence level 0 < α < 1, it
is possible to define a confidence interval for the unknown value p. In particular:

Pr
(
p̂ − zα

2
·
√

p̂ · (1 − p̂)
n

≤ p ≤ p̂ + zα
2

·
√

p̂ · (1 − p̂)
n

)
= 1 − α

2
(4)

where zα
2

is the 1 − α
2 quantile of the standard Gaussian distribution [67].

Equation (4) is constructed using the central limit theorem, under the
assumption that a large number of samples n have been collected (as a rule
of thumb, hundreds of samples or more are almost surely a good fit for this
assumption). The width of the interval, which is an index of the accuracy of
the estimate, can be arbitrarily reduced by increasing the number of samples n;
thus, Eq. (4) can be used as stopping criteria for the estimation process.

In our example, in a run with n = 10000 samples, we obtained p̂ = 0.2512
with standard deviation σ(p̂) = 0.00433703; thus, with 99% confidence, we can
conclude p ∈ [0.248126, 0.254274]. From Fig. 5, it is easy to see that p = 0.25,
which falls within the computed interval.

Note that hit-or-miss methods may require a large number of samples to
converge to a high accuracy (small interval). This is even worse when the actual
value of p is close to its extremes (0 or 1). Improvements on the convergence rates
can be achieved using more complex sampling procedures such as quasi-Monte
Carlo sampling [72], or importance sampling, Markov Chain Monte Carlo, or
slice sampling [7]; some of these methods have been used in probabilistic model
checking [42,43,53].

Further more accurate confidence intervals can also be used as stopping crite-
ria [67]; in probabilistic model checking, the most commonly used is the Chernoff-
Hoeffding’s bound [39,40,53]. Bayesian estimators can also be used, allowing for
the inclusion of prior knowledge on the expected result (when available) [32,71];
the use of Bayesian methods led to faster convergence rate in many probabilis-
tic verification problems [87]. Finally, a hybrid approach, that exploits interval
constraint propagation and compositional solving has been proposed for proba-
bilistic program analysis in [8,9].

Distribution-aware sampling. The hit-or-miss Monte Carlo method we described
offers a straightforward way to handle input distributions: the samples for the
Binomial experiment can be simply drawn from the known distribution. Efficient
sampling algorithms exist for the most common continuous and discrete distri-
butions, with off-the-shelf implementations for several programming languages
(e.g., [80] for Java). A comprehensive survey of random number generation is
beyond the scope of this paper (see e.g. [33]). We describe here one of the simplest
and most general techniques for this task: inverse CDF sampling.

Assume our goal is to take a sample from a distribution D, e.g., a Gaussian
distribution describing the inputs received by a temperature sensor. This distri-
bution has a cumulative distribution function CDFD(x) representing the proba-
bility of observing a value less than or equal than x [67]. The value of the CDF is



www.manaraa.com

Probabilistic Program Analysis 19

bounded between 0 and 1, for x → −∞ and x → ∞, respectively. Furthermore,
assuming every possible outcome has a strictly positive probability, as it is the
case for most distributions used in practice, the CDF is strictly monotonic and
invertible; let us denote its inverse CDF−1

D (·).
Inverse CDF sampling reduces sampling from D to sampling from a Uniform

distribution via the following three steps:

1. generate a random sample u from the Uniform distribution on [0, 1]
2. find the value x such that CDFD(x) = u, i.e., CDF−1

D (u)
3. return x as the sample from D

For example, to generate a sample from a Gaussian distribution N (10, 3), we
first generate a sample u from the uniform distribution in [0, 1], let’s say 0.83;
then, we compute CDF−1

N (10,3)(0.83) = 12.8625, which is our sample input.
The computation of the CDF and its inverse is efficient for most univariate

distributions used in practice, and implementations are available for all common
programming languages. Multivariate distributions are usually more challeng-
ing, with only a few cases allowing direct solutions. Nonetheless, more complex
computation methods exist (e.g., Gibbs sampling [73]), covering most of the
practically useful distributions. Multivariate distributions are indeed useful to
capture statistical dependence among input variables, whether this is know in
the application domain or inferred from the data. Finally, the discretization
method described in Sect. 3.3 remains a viable general, approximate solution;
however, distribution-aware sampling scales significantly better, especially when
high accuracy is required [8].

Beyond numerical domains. Sampling-based methods are theoretically applica-
ble for any input domain, provided a procedure for generating unbiased samples
(according to the input distribution) is available. Solutions have been proposed
for model counting of SAT problems (e.g., in [6,13,58], also with distribution-
aware approaches [12]) and SMT problems (e.g., in [14]), while stochastic
grammars can be used to generate random strings according to specified
distributions [30].

4 Conclusions and Future Directions

In this paper we have provided a survey on work to adapt two powerful program
analysis frameworks, data flow analysis and symbolic execution, to incorporate
probabilistic reasoning. This work has already motivated exciting advances in
model counting and solution space quantification as discussed in Sect. 3.3.

As in other areas of program analysis, a mutually-reinforcing cycle of develop-
ments in algorithms, tools, and applications is poised to spur further advances.
We believe that efforts to focus probabilistic program analyses techniques on
applications will reveal new opportunities for adapting algorithms to be more
efficient and effective. This will, in turn, inspire researchers to identify additional
applications of these techniques. Towards this end we describe several areas
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where application of probabilistic program analyses has potential and identify
opportunities for cross-fertilization among probabilistic analysis techniques.

1. Program understanding has been touched on in [23,31] where errors are found
by observing unexpected probabilities for certain behaviors. This provides a
means of quantifying the notion of “bugs as deviant behavior” that underlies
much work on fault detection. While numeric characterizations of distrib-
utions may be difficult for developers to interpret, visualizations of those
distributions might allow them to spot unexpected patterns to focus their
attention on.

2. Probabilistic symbolic execution is particularly well-suited for quantifying
the difference between two versions of a program [25]. This makes it an ideal
approach to rank how close a program is to a given oracle program, which has
applications in mutation analysis, program repair, approximate computing or
even in marking student assignments. Note that this provides a route to a
semantic ranking of programs as opposed to more syntactic rankings, e.g., by
measuring the shared syntactic structure.

3. It would be interesting to explore the extent to which the computation of
branch probabilities—which annotate models in tools like PRISM [50] and
PASS [37]—could be achieved, in part, by using path condition calculation
and solution space quantification techniques drawn from probabilistic sym-
bolic execution.

4. Hybrid approaches that mix probabilistic symbolic execution and data flow
seem promising. The unanalyzed portion of a program’s symbolic execution
tree defines a “residual” program. If that program can be extracted, via tech-
niques like slicing, then it could be encoded for analysis with data flow tech-
niques. The results of the precise-but-slow, and faster-but-less-precise, analy-
sis, could then be combined.

5. Probabilistic symbolic execution could be extended to support the more gen-
eral notion of probabilistic program treated by Gordon et al. [35]. The seman-
tics of observe(e) statements condition input on a boolean expression e by
aborting the path if the expression is false and renormalizing the output distri-
bution. Most existing symbolic execution frameworks already support assume
and assert statements to check and enforce predicates at program points.
Extending this to support observe requires that the probability estimates of
aborted paths be accumulated to permit renormalization at the end of the
symbolic execution. We note that relative to existing probabilistic symbolic
execution approaches this adds negligible overhead.

6. Probabilistic program analysis has many promising applications in the secu-
rity domain; for example it can be used in quantitative information flow analy-
sis [3], where the goal is to detect vulnerabilities and compute the leakage (in
number of bits of the secret) using information theory metrics. A program
can be viewed as a probabilistic function that maps a high security input
to an observable output. An adversary tries to guess the secret by observ-
ing the output. The leakage of a (deterministic) program can be expressed
as classical Shannon entropy: Leakage(P ) = −∑

i=1,n p(oi) log2 p(oi), where
p(oi) denotes the probability of observing oi and can be computed with the
techniques discussed in this article.
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26. Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: Proceedings of the 2013 International Conference on Software Engineering, pp.
622–631. IEEE Press (2013)

27. Fink, S., Dolby, J.: WALA-The TJ watson libraries for analysis (2012)
28. Floyd, R.W.: Assigning meanings to programs. In: Mathematical Aspects of Com-

puter Science, pp. 19–32 (1967)
29. Fosdick, L.D., Osterweil, L.J.: Data flow analysis in software reliability. ACM Com-

put. Surv. (CSUR) 8(3), 305–330 (1976)
30. Fu, K., Huang, T.: Stochastic grammars and languages. Int. J. Comput. Inform.

Sci. 1(2), 135–170 (1972)
31. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-

ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166–176. ACM (2012)

32. Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data
Analysis, 3rd edn. Chapman & Hall/CRC Texts in Statistical Science, Taylor &
Francis (2013)

33. Gentle, J.: Random Number Generation and Monte Carlo Methods. Statistics and
Computing. Springer, New York (2013)

34. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: ACM Sigplan Notices, vol. 40, pp. 213–223. ACM (2005)

35. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering, pp. 167–181.
ACM (2014)

http://dx.doi.org/10.1007/978-3-642-28869-2_9
http://dx.doi.org/10.1007/978-3-642-28869-2_9
http://arxiv.org/abs/1307.4474
http://dx.doi.org/10.1007/978-3-642-23702-7_25


www.manaraa.com

Probabilistic Program Analysis 23

36. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

37. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12002-2 30

38. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. Electron. Notes Theor.
Comput. Sci. 164(1), 47–65 (2006)
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Abstract. Ontologies are often understood as having a historical background
quite different to that of software engineering, which has caused a number of
issues when trying to use them in this context. However, recent works have char‐
acterized ontologies as being closely related to models and metamodels, thus
allowing for an inclusive treatment and use. In this work I describe how ontologies
are understood today within software engineering, how they relate to models and
metamodels, and how they are useful to software and systems engineering over
different lifecycle phases, in different domains, and in relation to standards such
as those from ISO/IEC JTC1 SC7.

Keywords: Ontologies · Models · Conceptual modelling · Domain-specific
modelling · Metamodelling · Modelling languages · Standards

1 Context and Motivation

In philosophy, ontology is the science of being [82]. That is, ontology is the branch of
philosophy concerned with the study of what is and how it is, regardless of what we may
know about it. As a countable noun, an ontology is a theory of the world in terms of
what exists and how, again regardless of what our knowledge about it may be. In turn,
the study of knowledge (including belief, truth and justification) is part of episte‐
mology, a different branch of philosophy [83 “Epistemology”].

Outside philosophy and in the computing realm, the word “ontology” is often used
with a different but related meaning; in 1993, Gruber [28], a researcher in artificial
intelligence and knowledge engineering, famously defined an ontology as “a formal
specification of a conceptualization”. There are two especially relevant differences
between this definition and the philosophical view described above:

• In computing, ontologies are formal, i.e., they are expressed in a formal or at least
semi-formal language, through which relevant concepts and their properties and
relationships are captured. In philosophy, however, ontologies are often presented in
natural language; see e.g. [10].

• In computing, an ontology captures a conceptualization, that is, some knowledge as
held by one or more people. This brings computing ontologies closer to epistemology
(the science of knowledge) than philosophical ontology (the science of knowledge-
independent being), as noted by [31].
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Despite these differences, we can still claim that computing ontologies are theories
of (a part of) the world, because they describe what a portion of reality looks like
(although many anti-realists would disagree). In this regard, and according to Gregor
[27], they are analytical (i.e., type 1) theories, since they describe the target domain
without attempting to explain causal phenomena or predict future observations.

Two additional points must be made in relation to Gruber’s definition and its context.
First of all, the definition provided by Gruber, and especially the way in which it has
been applied since, correspond mostly to what today we call domain ontologies, i.e.,
ontologies that describe a particular subject or field of work such as genomics [2], lexical
structures [66] or cultural heritage [52]. In addition to domain ontologies, however, the
literature has also studied upper ontologies, which, rather than describing a specific area
of reality, aim to establish what reality is like in general, making statements that should
be valid for any domain or application. For example, a domain ontology about lexical
structures may contain concepts such as “Determiner” or “Adjective”, which are only
relevant within that domain; similarly, a domain ontology for genomics may contain
concepts such as “Gene” or “Transposon”. An upper ontology, however, may contain
concepts that describe the very fabric of reality, such as “Type”, “Property” or “Role”;
see, e.g., BORO [76], DOLCE [62] or UFO [34]. The relationship between domain
ontologies and upper ontologies is that of conformance, i.e., a domain ontology conforms
to a particular upper ontology, very much as a model conforms to a metamodel. This
fact and its consequences are explored in Sect. 2.

Secondly, Gruber, as well as other authors who adopted and further developed the
application of ontologies in computing [29, 32, 38], were part of the artificial intelligence
(AI) community, which since the 1970s had been pressed to find a good manner to
describe states of affairs in the world on which machines were able to apply automatic
reasoning. Agent technologies, which became a fashionable research theme in the late
1990s and early 2000s, also pushed in this direction [12], and ontologies (as in computing
rather than philosophy) were developed as a solution to this problem. At the same time,
the software engineering community was developing solutions to cope with the
increasing complexity of the systems that were being developed, and introducing a wide
range of modelling languages and approaches over the 1980s and 1990s [14, 26, 61,
79]. As a result, the same problem (namely, representing the world in a suitable fashion)
was being addressed by two communities at the same time and with not much exchange
of information [46], and focusing on very different aspects of the problem. As pointed
out by [31], “AI researchers seem to have been much more interested in the nature of
reasoning rather than in the nature of the real world”. The solutions thus obtained by the
two communities (ontologies and modelling approaches) share some commonalities,
but also differ in significant ways, which are explored in Sect. 2. In particular, in software
engineering we use models for two major purposes: to describe domains and to specify
systems [21]. A model used to describe a domain looks much like a domain ontology,
and the relationship between models and ontologies is also explored in Sect. 2.

Finally, it is worth mentioning that ontologies have become quite typical in the
semantic web [7] field, particularly through World Wide Web Consortium (W3C) spec‐
ifications such as the Web Ontology Language (OWL) [86] and the Simple Knowledge
Organization System (SKOS) [85]. SKOS and most especially OWL use a very
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computation-oriented notion of what ontologies are and focus on web-based solutions,
which introduces significant “implementation noise” that makes these approaches barely
usable outside their niche. This is also discussed in Sect. 2.

Over the following sections, I will focus on how ontologies can be useful in software
engineering; for this reason, the discussion will be centred on software engineering and,
in general, I will use software engineering terms and concepts. Terminology and
concepts that are specific of the ontologies field are explicitly flagged.

In particular, the following sections describe three major aspects on how ontologies
can be useful in software engineering. First, ontologies help obtain a better philosophical
grounding of the software engineering discipline and practice, solving some issues that
often pass unnoticed. Second, ontological thinking allows us to carry out better domain
modelling by contributing aspects often neglected by traditional modelling technologies.
Third, ontologies constitute an excellent basis for the standardisation of the software
engineering field, especially within the work carried out by organizations such as ISO.

2 Ontologies and Models

Ontologies are intuitively close to models in software engineering, as described above.
However, before I discuss ontologies and their relationship to models, some concepts
must be fixed. This section provides some base concepts and terms, and then discusses
the differences and commonalities between ontologies and models.

2.1 Base Concepts in Models, Metamodels and Modelling Languages

A model is “an abstraction that represents some view on reality, necessarily omitting
details, and for a specific purpose” [39], or “an abstraction of a (real or language-based)
subject allowing predictions or inferences to be made” [59, 60], or “a statement about
a given subject under study (SUS), expressed in a given language” [23], or even “a
description of (part of) a system written in a well-defined language” [18]. In any case,
a model always involves the following [43]:

• Something that is represented, i.e., the modelled subject. (Mapping)
• An abstraction process, which eliminates irrelevant details of the former to keep only

what is relevant to a particular purpose. (Simplification)
• An ability to reason on the model and then apply the conclusions of the reasoning to

the modelled subject, i.e., a proxy function. (Application)

As seen above, representation plays a central role in models. A model can represent
the subject through mappings of three different kinds [21]:

• Isotypical, by which an element in the model maps straightforwardly to an entity in
the modelled subject. For example, an architectural plan of a house usually represents
the real house isotypically, since it maps to that house and only that house. Also, an
object in an object-oriented model or running process usually represents the real
entity it refers to isotypically.
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• Prototypical, by which an element in the model maps to a set of entities in the
modelled subject given by example; in other words, the element in the model exem‐
plifies the kind of subject entities that are being represented. For example, a model
car placed next to a cardboard model house to illustrate where cars are expected to
park represents cars prototypically, since the model car does not map to any particular
real car, but just to an example car.

• Metatypical, by which an element in the model maps to a set of entities in the
modelled subject given declaratively; in other words, the element in the model is a
description of the properties that subject entities must comply with in order to be
represented. For example, the technical specifications of the windows to install in the
house from our previous example constitute a metatypical representation, since they
do not depict a specific window or exemplify a set of allowed windows, but declare
what properties any window must possess in order to be acceptable. A class in an
object-oriented model or computer program also represents the real entities it refers
to metatypically.

Models that work in an isotypical manner have been called in the literature token
models, and those who represent metatypically have been called type models [60]. This
distinction is old, having been introduced by philosopher Charles Sanders Peirce in the
late 19th century, and plays an important role in contemporary ontological thinking [83
“Types and Tokens”]. However, and since different elements in one model can work in
different manners (isotopically, prototypically or metatypically), I prefer the more
precise granularity of the latter rather than the simplistic classification into token and
type models.

A metamodel, in turn, is a particular kind of model, as indicated by the qualifier
“meta-”; a metamodel is a “model of models” [68] or “a model of a set of models” [18].
Either case, it is clear that a metamodel is a model for which the modelled subjects are
also models. The relationship between a metamodel and the models that it represents is
one of conformance [39], i.e., a model conforms to a metamodel.

Also, and very importantly, since metamodels are a specific type of models, every‐
thing that we state about models also applies to metamodels, including their ability to
represent their subjects (i.e., other models) isotypically, prototypically or metatypically.

Defining what a modelling language is proves harder. For some authors, a modelling
language is “a set of models” [18], i.e., a language is the set of all possible models that
may be possibly expressed in that language. According to this view, a specification (or
model) of that language constitutes a metamodel, since we said that a metamodel is a
model of a set of models. This is analogous to saying that English is the set of all possible
sentences that may be possibly uttered in this language, and that a specification (or
model) of English constitutes its grammar (cf. metamodel).

Other authors, however, place no emphasis in this difference between metamodels
and languages, and define a modelling language as “an organised collection of model
unit kinds that focus on a particular modelling perspective” [23, 56 clause 7.1.18], where
model unit kinds are the primitives that this language uses to express models, e.g.,
“Class” or “Association” in UML [69].
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2.2 Base Concepts in Ontologies

As stated earlier, an ontology is “a formal specification of a conceptualization” [28,
29], or “a formal, explicit specification of a shared conceptualization” [15]. Also, “an
ontology defines a set of representational primitives with which to model a domain of
knowledge or discourse. The representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations among class members)” [30].
However, it is often emphasised in the literature that ontologies do not need to be
composed of type-level elements only, and they may also contain instance-level
elements such as objects, often called “individuals” in ontology parlance [15, 86], as
well as axioms [15, 86] that further constrain the semantics of the involved types and
instances.

Furthermore, ontologies are usually described as containing knowledge rather than
data [28], that is, they work at the knowledge level, a concept introduced by [67] in the
1980s. Knowledge and data, together with the intermediate level of information and the
top level of wisdom, compose the Ackoff “pyramid” [1] of increasing abstraction. Thus,
by representing the world in terms of knowledge rather than data, ontologies are
supposed to be more abstract than, say, database schemata, and provide better support
for semantics, especially in the context of the semantic web [7]. According to [39],
ontologies were introduced and popularised within the software engineering community
from the early 2000s and onwards, as shown by the increasing literature on the subject,
the availability of specific tools (such as Protégé protege.stanford.edu or Swoogles‐
woogle.umbc.edu) and ontology repositories, and the number of projects devoted to
ontologies. Still, some authors have pointed out that the promise of semantic knowledge,
especially on the web, is still unrealised [84].

Another essential aspects of ontologies in computing, hinted at above, is that they
must be formal and, more precisely, understandable by a computer or “codified in a
machine interpretable language” [15]. In fact, automatic (i.e., algorithmic) reasoning is
often presented as a key motivation to develop ontologies [31, 86]. To this purpose,
ontology languages such as CycL [33] or OWL [86] have been developed that focus on
rigorous implementation of formal logic. The amount of detail required to create an
ontology, as well as the associated “implementation noise”, are usually quite large; this
is a contradiction with the principle of minimal encoding bias [29], which states that a
good ontology should be expressed at the knowledge level and be as free from encoding
details as possible. In addition, this means that creating an ontology by hand (on paper
or on a whiteboard, for example) and dynamically exploring alternatives is extremely
difficult, and specialised tools are obligatory.

Finally, a clear distinction must be made between upper, or foundational, ontologies
and domain ontologies, as introduced in previous sections. An upper ontology is an
“axiomatic account of high-level domain-independent categories about the real world”
[80], or one that “defines a range of top-level domain-independent ontological catego‐
ries, which form a general foundation for more elaborated domain-specific ontologies”
[36]; this means upper ontologies should be valid across domains and contain very
abstract concepts only. In turn, a domain ontology is a “specific theory about a material
domain (e.g., law, medicine, archaeology, molecular biology, etc.)” or “a shared
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conceptual specification of the domain” [34]. Developing a domain ontology requires a
deep understanding of the particular domain of application; however, developing an
upper ontology requires a deep understanding of reality and the commitment to specific
meta-ontological choices as exemplified by [75], such as the nature of categorisation or
the structure of time.

This has several consequences. Firstly, it seems that upper ontologies closely match
the field of study of philosophical ontology, whereas domain ontologies are closer to
epistemology, since they describe a domain in terms of human-mediated knowledge
[31]. Secondly, upper ontologies establish a structure to which domain ontologies can
conform, by serving as a starting point to build new (domain) ontologies, asa reference
for the comparison of different (domain) ontologies, and as a common framework for
(domain) ontology harmonisation and integration [62].

2.3 Differences Between Ontologies and Models

As discussed above, ontologies and models seem to be trying to address the same prob‐
lems (representing the world in an abstract manner) but do it from very different
perspectives. These differences often result in different artefacts, different uses and
different possibilities:

• Ontologies are intended for computer processing, whereas models are aimed at
human understanding (but see below).

• Ontologies are highly formal and require a logical basis, whereas models can be semi-
formal and admit some degree of informality.

• Ontologies are harder to develop, whereas some models can be created quite easily.
• Ontologies aim to represent the world objectively, as it is, whereas models are inher‐

ently subjective.
• Ontologies often combine type (i.e., metatypical) and token (i.e., isotypical) repre‐

sentations together, whereas models tend to emphasise the difference.

First of all, the overall motivation for ontologies has been automated, algorithmic
reasoning [31, 86] carried out by machines. This has meant that an ontology is usually
a computer-oriented artefact, not always easily readable by humans. Contrarily, model‐
ling in software engineering has been motivated since the 1980s by the need to tackle
complexity and understand better the world around us as well as obtain better specifi‐
cations for the systems that engineers will build [44]. This means that models are usually
human-oriented artefacts that machines cannot process directly. However, the model-
based software engineering (MBSE) approach [9, 81], popularized in the last 15 years,
has changed this significantly. These days, models are often constructed as machine-
readable artefacts that can be processed by a computer to generate other models or even
code through MDA/MDE approaches [68] or languages such as Executable UML [64].
Still, much modelling is still not machine-based and oriented towards humans. From the
ontologies side, work in ontology visualization [58] is being carried out to make ontol‐
ogies more easily understandable to humans. In summary, ontologies and models have
very different historical aims, which are now converging.
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Since ontologies are traditionally geared towards computers, they are often based on
some form of formal logic, and an ontology, as an artefact, is a highly formal one. This
is particularly noticeable when looking at ontology languages; for example, CycL [33]
is based on first-order logic and has some support for modal operators and higher-order
quantification (such as “all” and “exists”); similarly, OWL [86] is a “computational
logic-based language” that supports full algorithmic decidability in its OWL-DL
(description logic) variant. Contrarily, many modelling languages rarely aim to attain
full formality, with the exception of those particular to the formal methods subfield or
oriented towards MBSE. Modelling languages, in general and as usually employed in
software engineering, are based on meta-specifications such as MOF [70] that make
extensive use of natural language and thus leave room for informality. Again, this is
changing now, and implementations based on languages such as UML are being
successfully used for machine processing.

As a further consequence, ontologies are usually harder to develop than models. An
example of this is the fact that ontologies usually require great care when identifying
and naming classes; in OWL, for instance, a class is identified by an international
resource identifier (IRI), which must be correctly generated and namespaced. In UML
[69], however, a class is identified by a simple name in natural language. For reasons
like this, it is very easy to informally sketch an exploratory model on a piece of paper
or a whiteboard, but it is very hard to do this foran ontology. However, the ontology,
once created, will have a degree of formality and a potentiality for automatic processing
that the model may lack.

As an additional major difference, ontologies aim to represent the world objectively,
as it is, without introducing much subjective bias, whereas models may embrace subjec‐
tivity. This is particularly so in the case of upper ontologies, although domain ontologies,
given their focus on shared conceptualizations [15], also have this property. According
to [31], ontologies constrain the meanings they aim to provide (through axioms, for
example), whereas conceptual models offer a fully subjective and pre-interpreted view
of the represented subject. In the case of upper ontologies, this is even more so, as
illustrated in [80] when describing foundational (i.e., upper) ontologies as being related
to “reusable information”, “semantic interoperability” and “axiomatic accounts of high-
level domain-independent categories”. In modelling, to the contrary, a very specific
purpose is always taken as a starting point, and it is assumed that this purpose strongly
shapes the resultant model; as pointed out by [4], “software engineers have taken a very
pragmatic approach to data representation, encoding only the information needed to
solve the problem in hand”. Also, the statistician George Box is usually credited as the
author of the famous aphorism “All models are wrong; some models are useful”; this is
often interpreted to mean that models, given the fact that they represent through abstrac‐
tion, are necessarily discarding details, and are therefore “wrong” or biased in some way
as dictated by the guiding purpose [43].

Lastly, ontologies often emphasise that a good account of reality is given by combining
classes and instances in the same representation, and usually there is no particular
emphasis in differentiating layers or levels. The modelling community, however, has
developed strong ideas about the separation of type (i.e., metatypical) and token (i.e.,
isotypical) representations, such as OMG’s strict metamodelling paradigm [3] and,

32 C. Gonzalez-Perez



www.manaraa.com

although classes and objects can be mixed together in the same models in, for example,
UML, this is very rarely done.

Additional differences between ontologies and models are reported and discussed
in [4].

2.4 Commonalities of Ontologies and Models

Despite the differences described in the previous section, numerous works have tried to
find commonalities between ontologies and models. This is not surprising, since, as
pointed out above, models and ontologies are trying to solve much the same problems,
and some common grounds are to be expected. In addition, cross-pollination between
disciplines is often seen as a motivation.

In [4], the authors characterize models and ontologies over several key aspects, and
observe that “all ontologies are models, but not all models are ontologies”, since any
information representation that fulfils the necessary conditions to be an ontology also
fulfils those to be a model. This means that ontologies are a specific kind of models and
that, therefore, everything we say about models should also apply to ontologies. Also,
the authors convincingly criticise many of the claims that are usually employed to high‐
light the differences between models and ontologies. For example, they show that
support for reasoning is not a definitional property of ontologies, that there is no require‐
ment for open or closed world assumptions for either models or ontologies, and that it
is perfectly possible to create information representations that are not shared (and there‐
fore are not ontologies) using ontology languages. All these facts mean that ontologies
and models are extremely similar, much more than often depicted. However, and
although the authors state that these strong similarities make many ontology-driven
efforts and technologies redundant, this is hard to sustain, since a subtype usually adds
details to the super type it derives from, and hence ontologies are likely to possess
specific properties (such as those described in Sect. 2.3) that are not present in models.
Still, most of the observations in [4] are valid and constitute a strong change of direction
to the usual discourse and its emphasis on difference.

A few years later, [39] tackled similar concerns from a different angle. Here, the
author relates models to domain ontologies, and metamodels to upper (foundational)
ontologies. In both cases, the author points out that other works also coincide in equating
or relating domain ontologies and models, such as [19, 47], and upper ontologies with
metamodels [34, 35].

It thus seems that ontologies and models, despite being often presented as different
technologies, are not that different after all. This is compatible with our experience when,
in 2006, we “extracted” a domain ontology for software development methodologies
[22] from an existing model of the same domain [56] with little effort. Apparently, the
same representation could be easily cast as either a software engineering model or a
domain ontology; this made us realise that ontological thinking may be applicable to
software engineering as a fruitful contribution.
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3 Using Ontologies

Previous sections have described ontologies, models, and the relationships between
them, focussing on differences and similarities. At the end of the last section, I concluded
that ontologies and models are not too different, and that, for this reason, bringing over
ontological thinking into software engineering should be feasible. In this section, I
explore three major areas where ontologies have proven useful to software engineering
over the last few years: philosophical grounding, domain modelling and standardisation.

3.1 For Philosophical Grounding

It is interesting to observe how software engineering has focussed so much in repre‐
senting reality, but invested so little in understanding the implications of these repre‐
sentations [46, 77]. Often, we make representational choices without being too conscious
of the consequences, and some choices are never made because we cannot even think
of them. Philosophy, however, has been dealing with the issue of representing reality
for some time, and can help. Thus, the philosophical grounding of modelling has become
the theme of some recent works in software engineering, in which ontologies (especially
upper) play an important role.

My colleagues and I have devoted some time to searching for answers to questions
such as “What are conceptual models made of?”, “What do classes in class models
actually represent?” or “What is the relationship between conceptual models, mental
models and physical reality?” [46, 77]. Take, for example, the second question.
Assuming that classes in class models represent categories of things, often called
“universals” in philosophy, do they stand for universals-as-they-are or rather universals-
as-we-know-them? In other words, do classes directly represent things in the world
(ontological, direct representation) or do they represent mental concepts, which in turn
represent things in the world (epistemic, mediated representation)? If the latter, and
assuming that mental concepts may be different from an individual to the next, how are
we sure that a class in a model stands for the “right” concept? How do we eliminate
subjectivity and ambiguity so that a shared understanding is achieved?

This line of reasoning has also been used to analyse specific aspects of modelling,
such as whole/part relationships in object-oriented models [41, 73, 74] or the UML itself
[72]. In [41], the authors characterize whole/part relationships by ontological analysis
and describe a number of primary (necessary, Boolean) and secondary (classificatory,
not necessarily Boolean) characteristics of these relationships. In [73, 74], the authors
continue to differentiate resultant and emergent properties by using Bunge’s ontology
[10, 11]; a resultant property is a property of an aggregate that is a direct result of prop‐
erties of its parts (the whole equals the sum of its parts), whereas an emergent property
of an aggregate is one that is not provided by any properties of its parts, but rather
emerges from their interaction (the whole is greater than the sum of its parts). For
example, a car engine is an aggregate of individual mechanical parts: the engine has a
resultant “Weight” property, directly obtained from its members’ properties, as well as
an emergent “Peak Power” property, which materialises from the interactions of its
members rather than being contributed directly by the members’ properties. The authors
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in [73, 74] conclude that an aggregate (the “whole” in a whole/part relationship) must
possess at least a resultant and an emergent property; otherwise, it would not be a true
aggregate.

A similar ontological analysis based on the Bunge-Wand-Weber approach [78] has
been carried out by [72] on the UML itself, resulting in a comprehensive set of recom‐
mendations to enhance UML. Some of the improvement areas include:

• Distinguishing between physically impossible and humanly disallowed events.
• Achieving better separation between the description of the domain and the specifi‐

cation of the system.
• Introducing additional modelling primitives to avoid overloading, i.e., the fact that

some existing modelling constructs are used for several different purposes.

Precisely, ontological analysis has been especially useful to explicitly clarify and
solve some obscure areas of modelling. For example, it has been long known that the
“is-a” construct in modelling was being used with little rigour to represent very different
semantics; in fact, [32] discusses the problem of “ISA overloading” back in 1998, and
proposes an initial framework to avoid it. We have observed that the problem is
compounded by the fact that the copula to be in English, very much like in most other
Indo-European languages, is extremely overloaded with meaning. We have identified
at least five senses in which the verb to be is regularly used in the modelling literature:

• Existence, by which something is said to exist, e.g., “There is a person”.
• Identity, by which two entities are said to be the same, e.g.,“Isabel is my wife”.
• Predication, by which a property is associated to an entity, e.g., “Isabel is tall”.
• Classification, by which an entity is assigned to a type or class, e.g., “Isabel is a

person”.
• Generalisation, by which a type or class is said to be subsumed by a more abstract

one, e.g., “A person is a living being”.

In modern-day object oriented languages, existence of an entity is conveyed by the
existence of the corresponding object; identity is not conveyed but delegated to the real-
world entity; predication is easily conveyed through attribute values; classification is
conveyed through the object’s “instance-of” relationship towards its class; and generali‐
sation is conveyed through generalisation/specialisation relationships between classes.
Thus, I do not see any problem with “is-a” overloading today as long as a well-defined
language is used that supports object identification, attribute values, instantiation rela‐
tionships and generalisation/specialisation relationships as separate modelling primitives.

Ontological reasoning is sometimes confronted with linguistic or epistemic thinking,
especially when discussing alternative ways of representing. In [5], for example,
“logical” and “physical” representations are described: when we say that a particular
book object in a library management system is a book, we are using a logical represen‐
tation; when we say that this object is an object, we are using a physical representation.
As discussed by [23], physical models represent ontologically, using concepts from what
we have called upper or foundational ontologies, such as “Object”. Contrarily, logical
models represent epistemically, using concepts from what we have called domain ontol‐
ogies, such as “Book”. Although some authors insist that physical and logical modelling
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(sometimes confusingly named linguistic and ontological modelling, respectively, such
as in [6]) are orthogonal manners of representing the same reality, it is easily seen that
they are not, and in fact logical models conform to physical models, very much like
domain ontologies conform to upper ontologies, and therefore a linear (rather than
orthogonal) chain of models arises as proposed by [23].

An additional area where ontological thinking has been used in software engineering
is that of language development. ConML is a conceptual modelling language designed for
users with no previous exposure to information technologies and especially oriented
towards domains in the humanities and social sciences [20, 48]. Although ConML super‐
ficially resembles UML, it contains some aspects that are worth mentioning. One of them
is that of symmetric unary associations. Most associations are binary (i.e., they link two
types together) or even higher-arity, but some are unary, which link a type back to itself.
Of these, some entail an asymmetric relation between the instances they connect, whereas
others establish a symmetric relation. UML and other conventional languages provide no
support to model this latter kind of associations, despite being extremely common in real
life: for example, a place and its neighbouring places, a person and his/her spouse, an
author and his/her co-authors, a mathematical function and its inverse, an archaeological‐
site and all those others that are visible from it. Since these associations involve a single
role (for both “ends”) attached to a single class, and UML requires that every association
end attached to a type has a different qualified name, these associations cannot be
expressed in UML. The solution adopted by ConML is straightforward, namely allowing
for associations with a single “end” [48 clause 5.6.9], and its novelty does not reside so
much in the adopted solution as in the detection of the need and the insight to differen‐
tiate between symmetric and asymmetric unary associations.

Also in relation to ConML, ontological thinking allowed us to improve the usual
treatment of null semantics that is found in most languages. Usually, “null” means no
data, but no distinction is made between ontological and epistemic reasons for this
absence. For example, if the “Name” column in a “Persons” table contains “null” for a
particular row, does this mean that this person lacks a name (ontological absence) or
rather that we do not know it (epistemic absence)? This is easy to determine for some
properties, which by nature cannot be ontologically absent (e.g., “Age” in the above
mentioned table), but impossible for others. For this reason, ConML uses null to indicate
ontological absence of information (i.e., “this data does not exist”) and unknown to
indicate epistemic absence of information (i.e., “this data exists but we do not know
about it”) [44 Problem 5, 48 clause 5.6.8]. This allows for more precise semantics and
a better representation of the domain.

3.2 As Domain Models

Regarding the second area of ontology use in software engineering, it is worth noting
that a number of domain-specific models have been published as the result of consensus
building in particular areas of discourse. Some examples include the Semantics of Busi‐
ness Vocabulary and Business Rules (SBVR) [71], which focuses on “documenting the
semantics of business vocabularies and business rules for the exchange of business
vocabularies and business rules among organizations and between software tools”; or
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the International Council of Museums (ICOM) International Committee for Documen‐
tation (CIDOC) Conceptual Reference Model (CIDOC CRM) [13, 52], which “provides
definitions and a formal structure for describing the implicit and explicit concepts and
relationships used in cultural heritage documentation”; or the Cultural Heritage Abstract
Reference Model (CHARM) [25, 51]. Models like these are highly specialised in a
technical area, have been created after more or less elaborate processes of consensus
building among experts in the field, are published to a wide audience for shared refer‐
ence, and often are provided in a machine-readable format that may allow automated
processing by computer. Therefore, and according to our discussion in previous sections,
they qualify as domain ontologies. Whether actual ontological thinking has been used
to construct these models is sometimes difficult to say, either because this fact is not
captured in the published documentation or because of the blur between ontologies and
conceptual modelling that we have previously described. Some of these models,
however, explicitly mention the fact that they are conceived as ontologies; for example,
ISO 21127:2014 [52], the standard version of CIDOC CRM, states in the Introduction
that “ISO 21127 is an ontology for cultural heritage information”.

The field of software engineering itself has also been described through a domain
ontology, at least partially, by e.g. [22], which is strongly based on the ISO/IEC 24744
[56] standard “Software Engineering – Metamodel for Development Methodologies”.

Having a published, shared ontology of a domain can be enormously useful in soft‐
ware engineering, especially in situations where a software system is to be built in a
specific domain. First of all, the domain ontology provides a readily available and
common vocabulary and conceptualization for the communication during requirements
elicitation and analysis. Despite no empirical studies have been carried out about this as
far as I know, our experience is that software developers learn about a domain much
faster and make fewer mistakes when supported by a domain ontology rather than mere
input and discussion with domain experts.

Secondly, the domain ontology can be used as a starting point on which to develop the
system’s domain model, along the lines proposed by domain-driven design (DDD) [17].
Usually, systems cover only a specific area of a domain, and often in a manner that is
highly particular to the customer of future users; this means that, whatever ontology is
taken as a base, it will likely have to be “pruned” and refined. The degree to which
domain ontologies support extension and tailoring is highly variable, this being a factor
with a large impact on the applicability of a domain ontology to the practice of software
engineering (see below). Some kinds of systems go one step beyond and, instead of being
based on a particular ontology, assume that there will be an ontology serving as concep‐
tual basis for the processes that take place inside, but that this ontology is not fixed. These
systems model the concept of ontology as part of the system’s conceptual model; it is the
case, for example, of agent-based systems developed by using the FAME Agent-Oriented
Modelling Language (FAML) [8]. In FAML, “Ontology” is a language primitive which,
together with others such as “Agent” or “Role”, allows the system developer to organize
a community of agents that exchange information in terms of an ontology, but leave the
specific contents of the ontology open to be dynamically evolvable at run time. In other
words, under FAML, ontologies are not constructed in design-time and then used in run-
time; rather, they are constructed, used and even dynamically re-constructed at run-time.
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Thirdly, the domain ontology can be used as a reference model for the interchange
of information between systems. Even if the system is not built according to the
ontology, it may be designed so that it can import and/or export data that conforms to
it, thus enhancing its interoperability. Some domain ontologies, in fact, are heavily
oriented towards this, such as CIDOC CRM, which is described in [13] as intended to
“provide the ‘semantic glue’ needed to mediate between different sources of cultural
heritage information”.

Some remarks are worth about the extension and tailoring of domain ontologies.
Although the knowledge captured by a domain ontology is supposed to be shared, it
sometimes happens that certain users of the ontology wish to alter specific aspects to
suit their particular views on reality, accommodate technical constrains, or simply add
detail to an abstract conceptualization. As we mentioned above, the degree to which
different ontologies cater for extension and tailoring varies greatly. Some, such as
CHARM [50], are explicitly conceived as abstract reference models, and must be
extended before they are used through a series of well documented extension guidelines
[49]. The fact that these ontologies are expressed in an explicit and documented language
contributes to the ease of extension, since formal support makes it easier to establish the
extension rules and validate whether an ontology is a true extension of the base one or
simply a different ontology. As a counterexample, CIDOC CRM [52] is expressed in a
language that is not named, described or documented, which makes extension difficult
and, what is worse, makes it impossible to verify whether a CIDOC CRM-looking
ontology is a true extension of the standard or not.

3.3 For Standardisation of Software Engineering

The third and last area of use of ontologies in software engineering is concerned with
the field of software engineering itself. Practice in this field is varied and colourful,
including approaches that range from the very rigorous of formal methods and high-
ceremony methodologies to the hacker ethics of some agile approaches and “extreme”
styles. At different points along this spectrum, different standardisation organizations
have been working to produce guidelines and recommendations that may help the
community to improve the ways in which we develop software systems. A good example
is the SWEBOK ontology [65], based on the Software Engineering Body of Knowledge
(SWEBOK), initially developed by the IEEE Computer Society and then made into an
international standard as ISO/IEC TR 19759:2005 [57]. Another interesting case is that
of the International Organization for Standardization (ISO), Joint Technical Committee
1, Sub-Committee 7 (JTC1/SC7), named “Software and systems engineering”. This
subcommittee has been working since 1987 in the “standardization of processes,
supporting tools and supporting technologies for the engineering of software products
and systems”. ISO JTC1/SC7 has produced a number of standards in the areas of process
lifecycles, process assessment, system architecture, open distributed processing, meth‐
odologies, testing or user documentation. Unfortunately, different standards, especially
when coming from different working groups, tend to use a different conceptualization
of the software engineering field, very often overlapping but incompatible [40]. For
example, ISO/IEC 12207 “Software life cycle processes” [54] and ISO/IEC 15504
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“Process assessment” [53] use substantially different conceptualizations of what a soft‐
ware process is; this is remarkable, given the fact that 15504 is supposed to establish a
manner in which processes such as those defined by 12207 are to be assessed. In some
cases, even standards coming out of the same working group present noticeable differ‐
ences in their conceptualization; it is the case, for example, of ISO/IEC 15288 “System
life cycle processes” [55] and the previously mentioned ISO/IEC 12207, which present
very different views on how processes are organized and composed of smaller units.
These discrepancies between standards make interoperation and communication very
difficult.

To mitigate this, and after the problem had been identified and described by several
key actors [40, 63], ISO JTC1/SC7 initiated a study group in 2012 with the aim to
“evaluate the feasibility of preparing an ontology (a conceptual model) of the domains
of interest of SC7 and its standards”. After some exploratory work, this group proposed
that the major challenged to be tackled was to provide a solution to the ongoing tension
between standardisation and customisation. In other words:

• standards already exist and are being actively applied by industry, so they should not
be changed arbitrarily;

• at the same time, reconciling differences necessarily means that somehow standards
must change.

The proposed solution was based on the idea of the gradual refinement of models,
already employed for CHARM [24]. According to this idea, a definitional elements
ontology (DEO) would be created to work as a very abstract representation of all the
SC7 concerns and concepts. The DEO would be so abstract that it could not be applied
straight away; it would need to be refined into a configured definitional ontology (CDO)
whenever is needed through a set of well-defined mechanisms, such as removal of
unwanted areas or extension with new concepts [42]. CDOs can be also “chained” an
arbitrary number of levels by further refining a CDO into a more concrete CDO, in order
to add detail in a piecemeal fashion, often to match the organizational and operational
needs of the community [45]. For example, a CDO could be created from SC7’s DEO
for each of the major scope areas in which SC7 works; from these first-level CDOs, each
working group could derive its own particular CDO, and even a more specific CDO
could be constructed for each family of standards when needed. Finally, a standard
domain ontology (SDO) is an instance of a CDO that suits the needs of a particular
standard, providing its conceptual foundation.

The study group proposed a proof-of-concept DEO to SC7 in late 2014, consisting
of 26 classes plus associations, which are strongly based on ISO/IEC 24744 [56] and
related work.

4 Outlook

In the previous sections I have described ontologies and ontological thinking from the
perspective of software engineering, and in particular in relation to modelling and meta‐
modelling. Although ontologies have been introduced in the software engineering field
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for some time now, and are being effectively used for some purposes, there are still a
number of areas where much work is to be done. The hybridisation of the two fields
(ontologies and software engineering, see Sect. 1) also poses new challenges. This is
particularly so in the area of philosophical grounding (Sect. 3.1), where specific aspects
of upper ontologies are being re-examined and questioned in recent works, such as those
about physical vs. logical modelling [16], alternative modelling primitives [37], or the
notion of identity [42]. This is a complex and difficult area of research where very few
studies exist with a strong empirical or logical backing, and for this reason more
advances are to be expected in the near future.

In the domain modelling and standardisation areas (Sects. 3.2 and 3.3), in turn, the
major challenge resides in finding a suitable manner to alleviate the tension between the
need for standardisation and that for customisation. The proposal from the ISO
JTC1/SC7 study group, described in Sect. 3.3, is being tested in the field and will hope‐
fully produce results in the next few years. Other approaches may also be proposed.
Also in this area and connected to the previous, a significant challenge is that of
consensus building. Since an ontology working as shared domain model, especially if
it is to be a standard, is supposed to be accepted by a large community, agreement must
be reached on what this model contains and how it represents reality. Although this is
primarily a social rather than technical issue, ontology and modelling technologies must
be developed so that they can accommodate the incremental construction of models and
exploratory developments as required by this situation.

In conclusion, ontologies have contributed very valuable insights to the theory and
practice of software engineering, especially in the subfield of conceptual modelling. But
they have also created a new area of inquiry, bringing up new questions and old problems
that will take long to settle.

Acknowledgements. Thank you to Brian Henderson-Sellers for the revision of a draft of this
work and for his contributions to the ideas presented here.
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Abstract. While the application of empirical methods has a long tra-
dition in domains such as performance evaluation, the application of
empirical methods with human subjects in order to evaluate the usability
of programming techniques, programming language constructs or whole
programming languages is relatively new (or, at least, running such stud-
ies is becoming more common). Despite the urgent need for such usabil-
ity studies, few researchers are well-versed in such techniques, certainly
when compared to the large number of researchers inventing new pro-
gramming techniques or formal approaches. The main goal of this text
is to introduce empirical methods for evaluating programming language
constructs, with a strong focus on quantitative methods. The paper con-
cludes with by explaining how and why a series of controlled experiments
were gradually designed to study the usability of type systems.

1 Introduction

Over the decades, a number of researchers and authors have argued about
the need for empirical studies in software science1 in general and quantitative,
human-centered studies in particular (see [14,37,38,44,46]). While the common
statement of these authors is, that there is a lack of empirical knowledge in
general, the domain of programming and programming language construction
is no exception (see for example [15,41])2: While new programming language
constructs appeared over the last decades, it is unclear (or at least not explicitly
documented) which of those constructs are actually usable by programmers and

1 According to Hanenberg [14] the phrase software science is being used in order to
describe the research related to software artifacts in general. While the term soft-
ware engineering is used much more often, especially the programming language
community or people doing performance measurements feel that this term does
not adequately describe their domains. We think that the term software science,
although originally used by Halstead [12] for something different, is more appropri-
ate to describe the whole domain of software-related research.

2 Sheil called the study of programming as practiced by computer science even ‘an
unholy mixture of mathematics, literary criticism, and folklore.’ 1 [37, p. 102].

c© Springer International Publishing AG 2017
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which ones are not. The study by Kaijanaho showed even that between 1973 and
2012 only 22 studies were performed that analyzed the usability of programming
language and that meet basic evidence standards (see [22]).

And these days, the number of new language constructs in main stream
programming languages seems to increase even more while there is typically no
evaluation of such language constructs. For example lambda expressions were
just recently added to languages such as Java or C++. However, it is not clear
whether such constructs are helpful to developers or whether they do harm on
software development. Of course, there are a number of people that argue for
or against such constructs. In the case of lambda expressions, people in favor
for functional programming language argue that there was always the need for
such constructs. Or people in favor for object-oriented languages that provided
lambda expressions since decades (such as for example Smalltalk programmers)
see in such a trend the confirmation that such language constructs should have
been in these main stream languages since years.3

However, the general problem of this line of argumentation is that software
has been written with previous versions of these main stream languages before.
I.e., there is no obvious need for such new language constructs. Of course, it
is possible that such new constructs make it easier to write software, i.e. it is
possible that the developers’ performance is better with such new constructs.
However, it is also possible that the developer performance will be reduced:

1. It could be possible that the semantics of the construct is not clear to devel-
opers. In such a case, there is a need to think about ways to improve the
training for these constructs by giving better documentation, examples, etc.

2. It could be the case that developers use the construct frequently in situa-
tions where it was not intended to be used and where the resulting software
becomes harder to write. Again in such a situation there is the need to think
about different ways to communicate under what circumstances the language
construct should be used.

3. It could be possible that the construct’s semantics is so complex that devel-
opers inherently either misunderstand it or do errors whenever they use it. In
such a situation it is at least worth to think about whether the introduction
of the language construct into the language was really an improvement of the
language.

Of course, it is also possible that the new language construct actually does help
developers. But without having evidence that at least under certain circum-
stances a language construct is able to help developers, there is the risk that
new languages or new language constructs finally harm developers and the soft-
ware they write.

Unfortunately, the question of whether or not a language construct is actually
usable by developers requires a different perspective on the research process than

3 It should be noted that just recently a study appeared which was not able to reveal
a measurable benefit of lambda expressions in C++. Instead, the study showed at
least for non-professional programmers a measurable disadvantage (see [45]).
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what’s mostly practiced and taught today. While computer scientists are quite
well-trained in formal methods as well as in mathematical reasoning on formal
methods, the introduction of empirical methods into the field software science
is still not main-stream.4 Additionally, the field of empirical methods is quite
large: there is a huge number of different quantitative and qualitative methods.
In order to apply these methods, there is a need to get substantial knowledge
about them.

This text gives a general introduction into the field of empirical studies in
software science and focuses on quantitative methods in general and controlled
experiments in particular. The text consists of two parts. The first part gives
a general introduction into the idea of human-centered studies and introduces
two concrete studies that apply such kind of studies, the second part describes a
series of controlled trials on the programming language constructs type system.

For the first part, we introduce the general idea of empirical studies in com-
parison to alternative approaches (Sect. 2). Then, we introduce the basic concepts
of human-centered controlled experiments including experimental designs, etc.
in Sect. 3. Afterwards, Sect. 4 illustrates two examples for experiments follow-
ing the idea of human-centered studies. In the second part (Sect. 5), we give a
more detailed description of one experiment series on type systems in order to
illustrate the process of knowledge gathering using human-centered controlled
experiments. Finally, we summarize and conclude this work in Sect. 6.

2 An Short Introduction into Empirical Studies
in Software Science

While the phrases ‘empirical studies’ or ‘empirical approaches’ in software science
are nowadays quite often used, the meaning of such phrases is not completely
precise. Hence, we start with a short description of research methods in software
science, followed by a description of different human-centered studies.

2.1 A Classification of Research Methods in Software Science

The scientific approaches in software science can be classified in the following
ways (se Fig. 1):

– Classical approaches: Classical approaches are based on mathematical and
logical reasoning. Examples for such approaches are the formal reasoning on
type systems in programming language design (see for example [32]).

– Stochastic approaches: Stochastic approaches are similar to the classical
approaches, but have an underlying stochastic model upon which mathemat-
ical/logical reasoning is performed. Such approaches can be for example often
found in the field of dependability of computer systems (see for example [26]).

4 Again, to get an impression of how less it is main-stream: according to Kaijanaho the
number of randomized controlled trials on human-factors comparative evaluation of
language features up to 2012 was 22 (see [22, p. 143]).
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Fig. 1. Categorization of research approaches (taken from [14]

– Empirical approaches: In contrast to the mathematical/logical approach,
empirical approaches make use of observations. I.e., the insights, which are
the result of research, are based on occuring phenomena.

• Benchmark-based / Stochastic-experimental approaches: Stocha-
stic-experimental and benchmark-based approaches are both based on
observing technical entities. A benchmark-based approach tests one unit
(programming language, virtual machine, etc.) against some pre-defined
elements (such as programs). Likewise, a stochastic-experimental app-
roach checks a stochastic statement in an experimental way (see for exam-
ple [10] for examples of benchmark-based approaches).

• Human-centered (socio-technical) approaches: In contrast to all
previously mentioned approaches, human-centered (or socio-technical)
approaches try to achieve progress by using humans as part of the research
approach. I.e. the human-centered approach either directly observes
humans or considers the results of things produced by humans (exam-
ples for this approach will be explained in more detail throughout this
paper).

2.2 Different Human-Centered Approaches

Although the phrase human-centered approach sounds like a unique approach,
it is a term that subsumes a number of different approaches where all have
in common that they either directly observe the behavior of humans or they
study the result of some human behavior. Both kinds of approaches are based
on observations, but different things are observed:

– Behavioral Studies: When the behavior of humans is the focus of a research
method, the researcher is interested in what people are actually doing. If for
example a researcher is interested in the way how people are using a certain
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technique, they observe humans while they are using the technique. Under
what situation the technique is being used plays in such studies rather a
minor role.

– Product Studies: When the result of humans’ behavior is observed, it means
that something that is produced by humans is analyzed. This typically means
a concrete piece of software that is analyzed, or a concrete programming
task performed by developers, or the result of some questionnaire given to
developers.

While the previous classification distinguishes between what is being observed
and analyzed, it does not say how this observation is being practiced.

In empirical research, it is common practice to distinguish between two dif-
ferent kinds of approaches: the qualitative and the quantitative approaches.
Unfortunately, both term are not completely well-defined. The following tries
to articulate how both terms are mostly used.

– Quantitative Approaches: Quantitative approaches are based on measure-
ments that can be directly gathered from observations and which can be
directly expressed in quantities. The analysis of this data is performed using
corresponding statistical methods.

– Qualitative Approaches: Qualitative approaches are based on data collec-
tions that cannot (necessarily) be expressed in terms of quantities.

The most typical example of a quantitative study is a controlled experiment
where a set of developers either uses a programming language A or a program-
ming language B in order to solve a certain programming task. In such a scenario,
a possible measurement is the development time required to solve the task. Lit-
erature such as by Wohlin et al. [46] or the paper by Ko et al. [25] describe how
controlled experiments are performed in software science in general.5

In general, the idea of controlled experiments are closely related to the philo-
sophical approach of the critical rationalism by Karl Popper [33] where a pre-
defined hypothesis is being tested by corresponding trials. The controlled studies
on type systems which are described later in this paper are examples of such
quantitative studies.

A typical example for a qualitative study is the application of grounded the-
ory by Glaser and Strauss [11], an approach that originates from the social
sciences. Based on that, a data collection is performed by for example inter-
viewing developers that are applying a certain technique. Then the researcher
uses techniques called open coding and memoing that identify the key elements
from the interviews. Afterwards (after some incremental steps) the researcher
performs a theoretical coding that consists of formulating hypotheses to be inte-
grated into a theory which is finally written up. The study by Hoda et al. [19]
is a detailed description of applying grounded theory to software engineering in
order to study self-organization in Agile teams.

5 Additionally, the paper collection of Victor Basili by Boehm et al. [1] gives a larger
set of examples about performed controlled trials.
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In contrast to quantitative approaches, whose methods seem to be quite
similar and at least related to controlled experiments, there is a large variety
of different qualitative methods where grounded theory is just one among it.
The paper by Seaman [35] gives a more detailed description of different data
collection techniques using qualitative methods in software engineering.

Although the previous classification seemed to indicate that there is a very
strict distinction between qualitative and quantitative approaches, it turns out
that in software engineering it is often the case that a quantitative study still
contains some qualitative elements: For example, if developers are asked to per-
form a simple modeling task, it is often the case that someone involved in the
experiment checks whether the task has been fulfilled. Most often, even in such
cases researchers speak about a quantitative, human-centered study, although
at least to a certain extent qualitative elements are part of the study.

3 An Short Introduction into Controlled Experiments
(with Human Subjects)

Before speaking about concrete experiment about programming languages, we
need to introduce first the whole idea of defining and executing controlled exper-
iments. This section explains the line of reasoning using controlled experiments
and the basic terminology in controlled experiments and it sketches how exper-
imenters actually define experiments.

3.1 Introduction into Hypotheses Testing

Controlled experiments can be directly motivated by the philosophy by Karl
Popper [33]. According to this, a scientific statement should not only express
a scientist’s perspective or belief about a certain topic. Instead, the researcher
should provide evidence that the statement actually holds, i.e. the statement
should be backed up by more than just the researcher’s personal conviction:
“Thus I may be utterly convinced of the truth of a statement; certain of the
evidence of my perceptions; overwhelmed by the intensity of my experience: every
doubt may seem to me absurd. But does this afford the slightest reason for science
to accept my statement? Can any statement be justified by the fact that K. R. P.
is utterly convinced of its truth? The answer is, ‘No’” [33, p. 24].

In order to provide such evidence, the starting point of controlled experiments
is a hypothesis, i.e. a statement that can be tested by the researcher running the
experiment, respectively researchers that doubt about the correctness of a given
hypothesis they have in mind, or which they found in literature: “The objectivity
of scientific statements lies in the fact that they can be intersubjectively tested”
[33, p. 22].

According to Popper, a hypothesis is a testable all-quantified statement. This
statement implies (i.e., predicts) a number of phenomena that can be observed.

Controlled experiments are a method to test such hypotheses. In general,
the line of argumentation of controlled experiments is, that if a hypothesis pre-
dicts a certain phenomenon, but the experiment does not reveal the predicted
phenomenon, the hypothesis is wrong.
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The following Boolean expression reveals the logic of hypothesis testing:

((Hypothesis → Observation) ∧ ¬Observation) → ¬Hypothesis

While this general idea is quite easy and plausible, the application of con-
trolled experiments in software science turns out to be not that trivial. The
main reason for it is that developers (respectively the developers’ behavior) can
typically not be described by a Boolean formula and unfortunately different
developers (typically) do not behave in absolutely the same way. And unfortu-
nately, there is a large variation among developers. In the literature, it is often
mentioned that developers can vary by the factor of 10, which is known as the
10x-problem [28] (although it should be mentioned that this factor 10 is not
really the result of a detailed study so far, but just some kind of metaphor
describing that there is a large difference between developer performance). The
10x problem describes in general that two comparable developers can differ in
the time they require to solve a given problem by the factor 10: one developer
might require 10 min while another one requires 100 min.

3.2 Basics of Experimentation

The following terms need to be known before going into details about concrete
experiments (see [21] for a more detailed description):

– Independent variable: The independent variable is the thing to be tested.
For example, if we want to compare a programming language A and a pro-
gramming language B, the independent variable is the programming language.
Of course, it is possible that there is more than one independent variable. For
example, it is possible that an experiment has the independent variable ‘pro-
gramming language’ and the independent variable ‘IDE’.

– Treatment: A treatment is one specific setting of the independent variable.
For example, the previously mentioned independent variable programming
language has the two treatments programming language A and programming
language B.

– Dependent variable (also called response variable): A dependent vari-
able is the measurement being performed within the experiment. For exam-
ple, if we want to compare the number of errors in language A and B, the
dependent variable is the number of errors. In order to retrieve the depen-
dent variable, a corresponding measurement technique is necessary, i.e. a
description of the way of the measurement is performed.

– Confounding factors: The confounding factors are those parts of an exper-
iment that (potentially) influence the experiment in an undesired way, i.e.
that have an accidental influence on the dependent variable.

– Null-Hypothesis / Alternative Hypothesis: The null hypothesis is the
hypothesis that is actually tested. The hypothesis (typically) says that under
all treatments the dependent variable is the same, i.e. the null-hypothesis
is a falsifiable statement about the relation between the dependent and the
independent variable. For example, an experiment that tests the influence of
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the programming language A and the language B on the number of errors
states that the means of the dependent variable under the treatment A is
the same as the mean under the treatment B: µA = µB . The alternative
hypothesis is the negation of the null-hypothesis, i.e. for the given example it
is µA �= µB .

– Threats to validity: Threats to validity are concerns that potentially influ-
ence the experiment as a whole in an undesired way such as in the possible
flawed conclusions drawn from the experiment. The threats to validity are
documented by the experimenter in order to identify potential weaknesses in
the experimental setup.

If a hypothesis is given, it is an experimenter’s task to find an appropriate
experimental design.

3.3 Experimental Designs

While there is a large variety of different experimental designs (see for example
[23] among a large variety of literature from the behavioral sciences), experiments
in software science just use a small number of different experimental design (see
for example [21,46]) that will be briefly introduced here. The reason for this
small number of used designs is (probably) caused by the 10x-problem, because
a large variation between subjects makes it hard to detect differences at all.

All of the mentioned designs are so-called randomized controlled trials, which
means that there is a random assignment from subjects to the corresponding
groups.

Each of the experimental designs comes with one or more analysis technique
based on inference statistics, i.e. each experimental design determines the way
how it can be analysed. The analysis techniques are the so-called significance
tests which are applied to the combination of dependent and independent vari-
able in order to determine whether (or not) the null-hypothesis holds. Each
significance tests comes with a number of preconditions that need to be fulfilled.

Instead of giving a detailed description of the tests, we just mentioned the
names of the tests to be applied. Details about the tests can be found in corre-
sponding literature on experimental design (see for example [23]) and are imple-
mented in standard statistical software such as SPSS6 or R7.

A summary of the experimental designs and the corresponding analysis tech-
niques is given in Table 1.

One-Factor Design with Two Alternatives (AB-Between-Subject). An
one-factor design with two alternatives is commonly called an AB-between-
subject experiment. It is a randomized trial with one independent variable and
two treatments. The subjects are randomly assigned to one of two groups and one
treatment is assigned to each group. The design checks the hypothesis explained

6 www.ibm.com/software/analytics/spss/.
7 https://www.r-project.org/.

www.ibm.com/software/analytics/spss/
https://www.r-project.org/
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above, i.e. it checks whether the mean of the dependent variable under treat-
ment A is the same as the mean under the treatment B. An AB-between-subject
design is analyzed using a so-called t-test or a Mann-Whitney-U-test.

One-Factor Design with N Alternatives. A variation of the AB experiment
is the one-factor design with N alternatives, i.e. the independent variable has n
treatments. The subjects are assigned to one of the n groups. Typically, such a
design is analyzed using a analysis of variance (ANOVA). Another alternative
is to compare all groups individually with the previously mentioned t-test or U-
test and do a correction of the alpha-error (such as the Bonferroni-correction).
Another alternative is to run a so-called post-hoc test on an ANOVA that com-
pares each alternative with one another.

Multi-Factor Designs. Multi-factor designs are applied whenever more than
one independent variable needs to be tested. The most common case (and the
easiest multi-factor design) is the 2× 2 factor design. The 2× 2 factor design is
based on 2 independent variables, each with two treatments. The design requires
4 groups (one group for each combination of treatments of both independent vari-
ables). The tested hypothesis of a 2 × 2 design is, that neither the first factor nor
the second factor influences the dependent variable. A 2× 2 design is analyzed
with a 2× 2 ANOVA that additionally determines, whether there is an interac-
tion between both factors, i.e. whether the combination of factors influences the
dependent variable in a significant way.

Paired One-Factor Design (AB-Within-Subject Design). A paired one-
factor design is given, whenever a single subject is measured on all treatments
of an independent variable, i.e. the dependent variable is measured multiple
times for a single subject (every time under a different treatment). The simplest
design is the AB-within-subject design where one subject is measured for both
treatments of the independent variable. An AB-within-subject design is typically
counterbalanced, i.e. it consists of two groups. The first group measures a sub-
ject under the treatment A and then under the treatment B, the second group
measures a subject first under treatment B and then under treatment A. An
AB-within-subject design is analysed using a paired t-test or a Wilcoxon-test.

Paired One-Factor Design with N Alternatives. The paired one-factor
design with N alternatives means that there are n treatments for the indepen-
dent variable and the subject is measured under all alternatives. This design is
typically analysed using a repeated-measures ANOVA.

AB-BA-Crossover Trial. The AB-BA-crossover trial is a special version of
the AB-within-subject design. The grouping of subjects is the same as in a the
AB-within-subject design with counterbalancing. However, the AB-BA-crossover
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trial explicitly takes into account that there are possible so-called carry-over
effects when a subject switches from one treatment to the other. Such carry-over
effects might be learning effects, etc. (see [36] for a detailed discussion of possible
crossover effects and [43] for a more detailed description of such effects in one
specific programming experiments). The analysis of an AB-BA crossover-trial is
a combination of a non-paired t-tests (in order to check for the possible carry-
over effect), and either a paired t-test (in case no carry-over -effects were found)
or a non-paired t-test applied only to the first measurements.8

Table 1. Standard designs and corresponding analysis techniques

Design Analysis technique

AB-Between-Subject T-Test (U-Test)

One-Factor Design With N
Alternatives

ANOVA

Multi-Factor-Designs Multi-Factor ANOVA

Paired One-Factor Design
(AB-Within-Subject Design)

Paired T-Test (Wilcoxon-Test)

Paired One-Factor Design
with N Alternatives

Repeated-Measures ANOVA

AB-BA-Crossover Trial T-Test

3.4 Analysis of Experiments, the Problem of Non-Significant
Results

It has been previously stated that the significance tests check the hypothesis.
However, this must be explained in more detail.

The significance checks the alpha error, i.e. the probability to reject the
hypothesis although it is true. This approach is the standard approach in exper-
imentation, although it should be mentioned that there are authors that criticize
this focus on the alpha error (see [18]).

The resulting p-value is compared to a previously defined alpha-level, which
is commonly accepted .05 in software science.9 In case the p-value is less than
.05, a significant difference has been found. Otherwise, the alpha-error it too
high and the common interpretation is, that no significant difference has been
found.

However, not finding a (significant) difference does not imply that there is no
difference. Experimenters usually state that an experiment that does not reveal
significant differences – experimenters call such experimentsnull experiments – has
8 The corresponding non-parametric tests [5] are valid here, too, i.e. it is possible to

analyse the crossover trial using a U-test and a Wilcoxon-test.
9 The rather arbitrary choice of .05 is probably commonly used because it has been

originally proposed by Fisher [8] although some other disciplines use a different alpha
level.
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failed for the following reason. As previously mentioned, experimenters in software
science are aware of the 10x-problem, i.e. they typically assume that there is a
large deviation among developers. However, a large deviation directly influences
the statistical tests: the higher the deviation between two samples (assuming the
same difference in means between both samples), the larger is the p-value for the
comparison of equality between both samples. I.e. if the deviation is high enough,
no difference will be detected. This implies that revealing no difference just means
that the experiment was not able to reveal a difference – independent of whether
there is or is not such a difference.

Experimenters are aware of this problem and consider this problem in the
experimental design. One approach to address this problem is to increase the
sample size. The other alternative is to enforce in an experiment a situation
where the expected difference in means is higher (or experimenters choose a
different experimental design that either reduces the deviation or whose analysis
technique has a larger statistical power).

In addition to the p-value, experimenters are interested in the effect size
(although it is not that often reported in experimental papers). For example, a
typical effect size for the t-test is Cohen’s D [4], which divides the difference in
means of two samples by its standard deviation.

3.5 Experiment Design from the Experimenter’s Perspective

As described in [17], experimenters try to reject a null-hypothesis, i.e. they try to
design experiments explicitly in way that permits to reveal a difference between
two treatments (under the assumption of an AB-experiment). Whether or not
they are finally able to reveal such a difference depends on a number of choices.

– Hypothesis: It is quite usual that the experimenter himself needs to define
the hypothesis to be tested. Unfortunately, it is quite common that new tech-
niques in software science appear without a precise definition of the phenom-
ena they imply. As a consequence, experimenters typically need to search on
their own for situations where there might be differences between techniques
to be tested and formulate a corresponding hypothesis.

– Experimental setup: Once a hypothesis has been found, experimenters
need to define a scenario under which this hypothesis can be tested. This
scenario consists of the programming tasks that could be given to subjects,
additional documentation given to subjects, etc.

– Experimental design: Section 3.3 might have given the impression that
the experimental design is directly implied by the hypothesis. However, this
is not the case. Typically, experimenters need to ask themselves, whether
subjects should be tested under multiple treatments. Additionally, in that
phase experimenters ask themselves, whether some variables that potentially
have an influence, should be explicitly considered as a separate factor, etc.

– Measurement: While the hypothesis already contains some description of
measurements (such a hypothesis ’the number of errors increases using pro-
gramming language A in comparison to B’), the experimenter has to define
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how precisely the measurement needs to be done. For example, it might be
possible that an error is a run-time error, a compile-time error, an error in
the design of the program, a ‘conceptual error’ (misuse of a construct), etc.

– Subjects: Typically, the experimenter decides what subjects should be used.
The choice of subjects probably has an influence on the experiment’s results
(for example, if arbitrary persons are chosen, it seems plausible that the
deviation becomes even larger). Additionally, the experimenter decides how
many subjects are required at least in the experiment and he needs to define
the kind of training given to the subjects.

All of these choices depend on the expected effect size of the factors and the
deviation among the subjects in the experiment – which is the reason why the
experimenter runs a number of small-scale studies in the experiment design
phase, so-called pilot trials.

4 Example Studies: Empirical Evaluations
of Programming Languages

This section introduces two different studies that quantitatively evaluate pro-
gramming languages or programming languages features from different perspec-
tives: a code repository study that actually is based on all previously introduced
ideas and a rather classical human-centered controlled trial.

4.1 Repository Study: Usage of the Programming Language
Feature ‘OptionalTyping’ [39]

The study by Souza and Figueiredo is based on code repositories. The focus of
the study is on type systems: it addresses the question, how in a programming
language that provides optional typing [2], i.e. the ability to let the developer
decide whether or not an expression should be statically typed, this features is
actually used. The programming language studied by Souza and Figueiredo is
Groovy.

The authors define a corpus consisting of about 7000 Groovy projects and
define the following research questions:

– Do programmers use types more often in the interface of their modules?
– Do programmers use types less often in test classes and scripts?
– Does the experience of programmers with other languages influence their

choice for typing code?10,11

Based on these research questions, the authors define how the data is being col-
lected: For fields, constructor parameters, method parameters, method returns

10 The points are word-by-word citatations from Souza and Figueiredo [39].
11 Two other questions are formulated, which are skipped were for reasons of

simplification.
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and local variables it is counted for each project, how often they make use of
static types. I.e. the situation is, that five treatments of the independent vari-
able (declaration kind) are defined. The dependent variable is the occurrence
of the static types. Hence, a one-way ANOVA is applied that states, that the
factor declaration kind is significant (p < .001). Next, a post-hoc test is applied
that compares all treatment one another. This test reveals significant differences
between each treatment with one exception: method parameters and returns are
not different (which can be interpreted that if people statically type the parame-
ters in a method definition, they also declare a type for the return). The main
outcome of the pairwise comparison is, that local variables are the least often
statically typed declarations (p < .001). Method parameters turn out to be the
declarations that are most often statically typed.

The same analysis is performed on test-classes. There the result is, that again
returns are most often statically typed.

Then, the same analysis is performed on script files, with the result that
hardly anything is statically typed in script files – which significantly differs
from usual classes (p < .05) except for local variables (p > .3).

Next, the authors check, whether the declared visibility (public, protected,
private) has an influence on the declaration with the result, that (again) with
the interesting observation that protected fields are most often statically typed,
followed by public fields (again, p < .001). In addition to the p-values the authors
give some descriptive numbers as well which state that about 75% of all protected
methods are statically typed.

With respect to the developers’ backgrounds, the authors determine from the
developers contributing to the repository whether they have a background in a
statically typed language, in a dynamically typed language or both. Again, the
test reveals significant differences between all groups except the group that uses
statically and dynamically typed languages in comparison to the group that uses
only dynamically typed languages.

The essential contribution of the study is, that is shows there are a num-
ber of influencing factors that determine whether or not static types are used
in a language that provides optional typing. First, it depends on the kind of
declaration whether or not it will be statically typed, it depends on the kind of
code (ordinary code, test classes and scripts) and it depends on the developer’s
experience whether or not he makes use of static typing.

Hence, this repository mining study essentially uses all parts of controlled
experiments (hypotheses, data collection, data analysis using inference statis-
tics) and gives strong evidence for its claims. Instead of building a controlled
experiment, i.e. instead of defining a situation where data should be constructed
by human subjects, the study uses existing data from code repositories. What’s
essential in the study is, that – although the underlying research question (how
do developers use static typing) seems quite trivial – the resulting study is quite
complex, because it turns out that the answer is influenced by multiple, different
factors.
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What the study cannot answer is, whether the choice for or against static
types is actually a good one, i.e. it is unclear whether either people or projects
who declared static types would have benefited from not using static types, or
whether people or projects who used dynamic types would have benefited from
using static types. This should not sound as a criticicm of the study itself. It
just says that focus of the study is not on the question what the actual effect of
static typing on developer or projects is. The focus is on how developers apply
the construct.

4.2 Controlled Trial: Study on Programming Language Syntax [42]

The second study used here as an example is a traditional controlled trial by
Stefik and Siebert [42]. The controlled trial focuses on the syntax of programming
languages and determines what influence keywords (respectively tokens) have
on the understandability of a programming language’s syntax. One of the main
focus of the authors is on non-programmer or novices, because they belong to
the group that is addressed by the programming language Quorum written by
the authors.

The study consists of three different substudies, altogether approximately
250 subjects participated in the experiment.

First Study: Survey. In the first study (which is in fact not a controlled trial
and does not make use of inference statistics12) subjects were asked to rate a
number of words that are often used in common programming languages (for,
if, static, etc.) or commonly used operators (such as + in Java for concatenating
strings). The keywords were grouped in six different categories (such as types,
control flow, etc.). The participants were grouped according to their expertise
into the groups ‘programmers’ and ‘non-programmers’. Then, for both groups the
best and the worst rated words are being described. An interesting observation is,
that there seems to be some large disagreement between non-programmers and
programmers. For example, words such as ’String’ do not seem to be intuitive for
non-programmers while they are for programmers (for obvious reasons). Another
interesting observation is, that for loops the worst rated words are foreach (for
non-programmers as well as for programmers) and while (for non-programmers).
It is also interesting that for operators such as ‘not equal’ both groups preferred
tokens such as ‘not=’ (while != only made sense to programmers).

Again, the results of this survey need to be handled with care. The authors
argue (and they are probably right) that they cannot apply significance tests in
order to check whether for example the word ’String’ is considered much worse
by novices than any other word. But this study gives a first idea about the
problem of keywords in programming languages – a first idea that is used in the
subsequent studies.
12 It is understandable that the authors do not run inference-statistical methods: a huge

number of different words is being tested and it sounds plausible, that traditional
approaches from inference statistics would not have revealed differences at all –
because of the high number of variables.
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Study on Language Intuitiveness. In the second study, subjects were mainly
asked about structural elements of the language such as loops, if statements,
functions, etc. where different syntactical versions of such constructs in nine
different languages (C++, Java, Smalltalk, PHP, Perl, Ruby, Go, Python, and
Quorum) were shown to the subjects who rated for each construct how intuitive
they consider this construct. Due to the rather low number of alternatives (com-
pared to the first study by the same authors) it is possible to make a hypothesis
test on the results.

The authors defined three hypotheses to be tested:

1. In aggregate, programming languages are rated as equally intuitive.
2. All programming language constructs are rated as equally intuitive.
3. Programming experience has no effect on subjective ratings of intuitiveness.

The hypothesis is tested using a 2-factor ANOVA: the first factor is the task with
seven treatments (loops, if, etc.), the second factor is the language with nine
treatments (C++, Java, etc.). The analysis reveals some amazing results. First,
languages are significantly different among all tasks (p < .001), again, there
were significant differences between programmers (p < 0.001). A corresponding
post-hoc test revealed that the language invented by the authors of the study
“was rated as statistically significantly more intuitive than Go (p < 0.001), C++
(p < 0.001), Perl (p < 0.001), Python (p < 0.001), Ruby (p < 0.024), Smalltalk
(p < 0.001), PHP (p < 0.001), and approached significance with Java (p =
.055)” [42, p. 19:21]. With respect to all language constructs (i.e. the variable
task), each task was significant. The programming experience mattered on the
effect of the rating as well (p < .001).

Study on Novices Accuracy Rates. In the third study13, the authors for-
mulate the following hypotheses:

1. Novices will have equal accuracy rates while programming, regardless of the
programming language used.

2. All syntactical variations of programming language constructs (e.g., loops,
conditionals) have equal accuracy rates among novices.

In order to check this hypotheses, the authors defined a measurement technique
based on a given tool that they defined before. In short, this measurement checks
the accuracy for each token to be written by a subject when writing a piece of
code. As a reference, subjects were given a sample program in the language they
were working on.

Altogether, 6 different programming languages were tested that way (Quo-
rum, Perl, Randomo, Java, Ruby, Python), where Randomo is a language whose
syntax is arbitrarily chosen from the ASCII-table. Additionally, 6 different tasks

13 The authors distinguish in his paper between a third and a fourth study that we
present here as one, because the hypothesis and applied analysis methods were
identical.
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were defined. I.e. each subject was measured more than once. Hence, the results
were analyzed using a repeated-measures ANOVA. Again, language turned out
to be a significant factor (p < .001). The following post-hoc test reveals that
only the programming languages Quorum, Python and Ruby were significantly
different from the randomly created language Randomo – for Java (p = .922)
and Perl (p = .573) this statement does not hold. With respect to the second
hypothesis, the corresponding post-hoc test reveals again significant results.

Summary of the Study. Despite the fact, that most programming language
designers (and probably even programmers) do not have a big focus on the pro-
gramming language syntax, this study actually measures (based on the rating of
people) that syntax does matter. And among the findings it is rather a tragedy
that the syntax of main stream languages such as Java are not considered as
intuitive. Another interesting observation is that the intuition changes between
novices and programmers which is an indicator that an originally rather non-
intuitive syntax construct needs to be explicitly learned first, before it can be
understood. This implies that at least some of the nowadays main stream lan-
guages have at least some tendency to be harder to learn than other languages.

From the perspective of controlled experimentation this set of studies gives a
first idea about the variety of different steps that scientists performing controlled
experiments typically do. The authors started with the idea that there might
be differences in the intuitiveness of programming language syntax. Instead of
starting now with a concrete experiment, the authors started with some survey
in order to check, whether they get a first indicator for the validity of their
suspicion. After the survey revealed some remarkable differences, the authors
were able to concentrate in a follow up study on those elements that constitutes
the differences. And finally they ran a controlled experiment in order to check
whether their suspicion is actually observable.

5 Empirical Studies on the Usability
of Type Systems - An Experience Report

Among the large set of available programming language features, probably the
most deeply studied ones are type systems14 where the author of this paper con-
tributed in a number of studies over the last years. These studies (quantitative,
controlled experiments on the usability of type systems) do represent a series of
studies that reflect type systems from different perspectives.

In the following, we describe the studies that have been performed over the
years. The main focus is on the construction of the hypothesis up to the construc-
tion of the experiment design. While we mention only the results of the analysis
briefly, we discuss in more detail the possible interpretations of the experiments.

14 At least, this statement can be found in the work by Kaijanaho [22].
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5.1 Motivation

The overall motivation for controlled studies on static type systems was that
there is a community that considers static type systems (see [3,32]) valuable:
Static type systems played a major role in the programming language design of
main stream programming languages such as Java or C++. However, over the
last decades, programming languages such as PHP, Ruby, Python, and especially
JavaScript played a larger role, especially in software development for the web.
Additionally, taking into account that static type systems are a relatively well-
established technique in programming language research and in software industry
it seems appropriate to test whether the application of static type systems has
a measurable influence on software development.

5.2 Related Controlled Experiments

The start of the experiment series originated from two other studies that had
been performed before. One study by Cannon [9] and one by Prechelt and
Tichy [34]:

– The experiment by Gannon from the 70 s revealed a positive influence of
static type system in comparison to an untyped systems in terms of errors
and development time [9].

– After two decades, Prechelt and Tichy ran a study that compared static type
checking versus no type checking on procedure arguments (see [34]) based on
the languages ANSI C and K&R C with the result that the statically typed
group was faster in solving programming tasks.

While we considered both experiments convincing, we thought it is still valuable
to run an additional study. Additionally, it should be mentioned that in addition
to the study by Souza and Figueiredo, mentioned in the previous section, there
are additional studies that check the use of a certain language construct using
code repositories (see for example [30]).

5.3 The Start of the Experiment Series [13]

The study by Gannon was performed at a time where software development was
quite different from nowadays development. Writing and executing programs
where not done using IDEs and it can be assumed that things such as testing
frameworks did not play a major role. Next, we were thinking that maybe the
choice of ANSI C and K&R in the experiment by Prechelt and Tichy – lan-
guages the subjects were possibly familiar with – possibly had an influence on
the experiment results. And finally, both experiments required only relatively few
time from the subjects (approximately 2 h). We were thinking that an experi-
ment where developers were asked to write a piece of software that requires more
time would be more convincing.

In order to overcome these points, our first experiment tried to find a larger
task. Additionally, we thought that the process of testing a task should be made
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easier: instead of taking GUI-code into account (as being done in the Prechelt
experiment), we were thinking that software should be found that can be more
easily tested. As a result, we decided to give developers the programming task to
write a parser for a small subject of Java. Before writing the parser, we decided
to ask the subjects to write a scanner.

After a (very small) test, we decided to give developers about 27 hours time
to write the parser. In order to overcome the language problem, we decided
to write our own language just to be used in the experiment. The resulting
language (syntactically a mixture of Java and Smalltalk) was written in two
variants: a statically typed and a dynamically typed variant. The language was
available only within the experimental environment, i.e. subjects were not able
to take any material about the language at home. In order to train the subjects,
corresponding teaching material was developed and the language was taught to
the subjects within one and a half day. Approximately 50 subjects participated
in the study divided into two groups (AB-experiment).

The measurements in the experiment were the time until a subset of the
scanner was finished and the percentage of test cases that were fulfilled by the
final parser.

The result of the experiment was quite frustrating. While we were able to
measure a difference in the development time for the scanner (p < .05), we were
not able to measure a difference in the number of successful test cases for the
parser (p > .4).

However, the problem with the measurement on the scanner was, that we
did not explicitly ask the subjects to write a complete scanner before starting
with the parser. As a consequence, it was quite unclear how trustworthy the
results of this measurement was. With respect to the parser, the problem was
that a parser (at least the one produced by the subjects) was hardly possible to
test. The underlying idea to use words from the grammar and test whether these
words are accepted turned out to be a bad idea: parser implementations that
had problems with recursions hardly accepted any word. We concluded from the
experiment mainly the following things: first, the experiment definition was not
appropriate because of the chosen tasks, and second, the effort for the experiment
(50 student subjects, each about 40 h involved, development of a programming
language for the experiment) was much too high. However, we also concluded
that the possible benefit of static type systems— in case it does exist— cannot
be identified that easily by an experiment which motivated us to continue with
the work on controlled experiments on type systems.

5.4 Type Casts [43]

Since we were not able to show the benefit of static type systems in the first exper-
iment, we decided to test a hypothesis from the dynamic programming language
community stating, that type casts, a language construct that does not appear in
dynamic programming languages, causes serious problems for developers.

We tried to reduce the whole effort for the experiment: the goal was to define
an experiment where the subjects were required to work at most one day on the
programming task. Additionally, the first experiment revealed too few points
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of measurements that we were able to reason on. Hence, we decided to give
our subjects multiple tasks: each task should be relatively small, but still able
to reveal possible differences. In order to reduce teaching, we no longer used
a new language, but used a language were we expected that the subjects were
familiar with: we used Java (as the statically typed language) and Groovy (as
the dynamically typed language) where no special language constructs of Groovy
were used in the experiment. Instead, it was only used as a dynamically typed
Java. Since IDEs for Groovy and Java seemed to have quite different qualities
we decided to run the experiments just in a text editor.

We ended up with five very small programming tasks where the expected
number of lines of code were between 5 and 25. In these tasks, subjects using
Java had to use a very small API that inherently required them to type cast
objects. Such casts were not necessary for the developers using Groovy. Figure 2
illustrates a piece of code that was a possible Java solution for the easiest task.

pub l i c void doPoache r sGoa l ( P l a y e r p , Keeper t ) {
i f ( ( p i n s t a n c e o f Forward ) && ( p . number == 9 ) {

( ( Forward ) p ) . poache r sGoa l ++;
t . g o a l sAg a i n s t ++;

} e l s e
throw new Socc e rExc ep t i o n ( " . . . " ) ;

}}

Fig. 2. Example solution code for Experiment 2 (taken from [43])

As measurements, we still used development time – and used test cases that
checked for the correctness of the solutions. We assumed that relatively few
subjects would participate in the study. As a reaction on that, we decided to
use a counterbalanced AB-within subject design. In order to reduce the possible
learning effect, we defined two different APIs. When the subjects switched to
the other treatment, they used the other API. Since the tasks were different, we
compared the tasks individually, i.e. by running five individual paired tests.

Fig. 3. Results from type cast experiment (taken from [43])
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21 subjects (again students) participated in the experiment. Figure 3 illus-
trates the resulting measurements. For the first three tasks we were able to find
significant differences (p < .01) while we were not able to find differences for the
last tasks (p > .5). We concluded from that, that type casts play potentially a
role in programming – but only in trivial situations where the LOC of a task
is less than 10 lines of code. Hence, from our perspective type casts should not
play a major role in the discussion about type systems.

Altogether, we were quite satisfied with the experiment. Although we did
not had the feeling that we identified a major issue in type systems, we had the
feeling that the experiment design worked quite fine and the reduction of the
programming tasks was from our point of view a good decision, despite the fact
that the programming tasks now became a major threat to validity (because of
their size).

5.5 Types as Documentation in Undocumented APIs ([16,24,27])

Based on the two previously executed experiments on type systems, we were
more intensively thinking about the question, under what circumstances we
would expect to measure differences between static and dynamic types. I.e. we
spent a lot of time on defining a possible hypothesis to be tested instead of
directly using a given hypothesis. However, a comment from the literature by
Pierce, who stated that static types in programming language where the type
names appear in the code might help as a documentation [32] gave us some hint
in what direction further experiments could go. Hence, our goal was to define
programming tasks where we expected that the additional documentation of
the static types help developers to understand the code. After some discussions
and first measurements in pilot studies, we decided to define programming tasks
where developers have to use a completely undocumented API – people with the
static type names in the code have an additional source of documentation while
developers without these type names have not.

Because of our experiences with the previous study, we (again) defined five
programming tasks and again used Java and Groovy as the programming lan-
guages. Again, we used an AB-within-subject design. Again, we just used text
editors for the experiment.

The experiment was executed on 27 subjects. Figure 4 illustrates the results of
the measurements. Altogether, the results were slightly mixed: while we received
in three of the five tasks the expected results (the statically typed group per-
formed better), two tasks showed the opposite. Especially the two programming
tasks that showed the opposite than what we expected frustrated us: Although
we took some additional data into account, it was still unclear to us what made
the two tasks special. However, we also had to take into account that there might
be some hidden problems in the tasks themselves or the task descriptions.

Because we were not able to explain the phenomena to us, we decided to
replicate the experiment: we started from the same starting point (defining an
undocumented API, defining corresponding programming tasks on it) and re-ran
the experiment [16,24].
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Fig. 4. Results from types as documentation experiment (taken from [27])

33 subjects participated in the replication. And the results were as expected:
the statically typed group required less time for using the undocumented API.
Additionally, we used the same experiment to double-check a previous (unpub-
lished) experiment where we checked whether debugging type errors requires
less time using a static type system, a statement that we were able to confirm
[16,24].

5.6 Replication of Previous Findings (Petersen et al. [31])

Although the previous experiment finally revealed the expected results, we (still)
had to take into account that the result of the experiment repetition might
have been only a matter of luck – taking into account that the first experiment
revealed slightly contradictory results. As a consequence, we decided to replicate
the experiment once more. But in order to get some (small) new insights, we
decided to run now the experiment with some tool support: we used Eclipse for
the Java as well as for the Groovy group. Hence, the goal was not only to see
whether we are able to replicate the results, the goal was as well to get rid of
one threats to validity of previous experiments (the missing IDE). However, we
decided to reduce the programming experiment once more: we just used two
programming tasks in the experiment. Again, we used an AB-within-subject
design.

23 subjects (students) participated in the experiment. Again, we got clear
results (see Fig. 5): for both programming tasks subjects using the statically
typed programming language required significantly less time to solve the task
(p < .05).
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Fig. 5. Results from experiment repetition (taken from [31])

5.7 Types as Pure Syntax Elements (Spiza and Hanenberg
2014 [40])

While we ran in between another experiment that compared generic and raw
typed in Java15, we wanted to put our focus on asking the question about the
documentation characteristics of static typed in a slightly different way. In case
the static type names help in the code, it is possible that they do help without
actually doing any type checking. I.e. it is possible that the type names help
(i.e. just the piece of syntax), although the type system itself is not required.
However, we rather thought that the type system is necessary as long as the
type names in the API are correct. But as soon as the type names are incorrect,
we expected that developers might have troubles.

We defined three programming tasks comparable to the ones used in the
previous experiments. All type names in the API were correct. We additionally
defined one task where one parameter type (in a list of parameter types) was
not correct. With respect to the experimental design, we had the tendency that
those tasks with correct type names are rather not critical and can be defined
in the same way as in previous experiments (AB-within subject). However, we
expected the learning effect for the task with the incorrect type to be too high –
even if we would have defined a ‘similar’ programming task. As a consequence,
we decided test the task with the incorrect type name between subject.

The programming language used in the experiment was Dart – a language
with an optional type system that permitted us to switch off the type checker.

The results of the experiment (20 students participated as subjects) were
quite surprising. Again, the static type names helped using the API (for two
tasks p < .05, non significant results for one task), although the effect was
smaller than in previous experiments. However, the task with the wrong type
name revealed a significant, negative impact for the group with the (wrong)
static type name (p < .05).

15 The result of the experient was that the additional type annotations of generic Java
helped when using an undocumented API – which (again) confirmed the previous
findings– but which also showed a situation where generic types reduced the exten-
sibility of an API (see [20]).
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5.8 A First Summary

Although not all experiments revealed clear results (such as the experiment
by Mayer et al. [27]), the large majority of experiments revealed that the static
type system helps using an undocumented API. Additionally, we got at least one
results from a smaller experiment, that a wrong type name could do harm. As a
consequence, our interpretation of the experiment series so far is, that the help of
the static type system is be caused by the syntactic representation of type names,
but the absence of a type check directly negates this effect. Additionally, we know
that the type system helps fixing type errors (in comparison to corresponding
MessageNotUnderstood errors16).

However, even taking into account that there is a significant, positive impact
of static type systems, it is not clear how large this effect is in comparison to
other effects. Hence, the next steps from here are to define experiments that
compare the type system effect with something else.

5.9 Comparing Types and Documentation (Endrikat et al. [6])

A first experiment we performed that tried to compare the effect of type systems
with something else was done by Endrikat et al. [6]. Again, the underlying motiva-
tion of documentation was still the leading idea for the work. The general question
was, how type systems perform when documentation is available. A possible result
of this could be that in the presence of documentation the effect of the static type
system is directly hidden by the documentation effect. Or the type system effect
is still present and can be compared to the documentation effect.

In order to define a controlled trial, we had to decide what kind of doc-
umentation should be used in the experiment. We decided to use a kind of
documentation that consisted of some free-text explaining certain parts of an
API and additional code examples that helped only to a certain extent solving
given programming tasks (otherwise, developers with documentation could just
copy and paste solutions).

The experiment now speaks about a second factor, the documentation factor
with the two treatments ‘documentation available’ and ‘documentation not avail-
able’. If we compare it to the factor type system (again with the treatment ‘static
type system’ and ‘dynamic type system’), this implies that we have a 2× 2 factor
design. While almost all previous studies were based on an within-subject mea-
surement, we expected that this is not possible for the here given experiment: we
expected (again) that the learning effect using the documentation would be too
high. However, we already had enough experience in the previous studies that we
felt confident that we are able to design a between-subject experiment that could
reveal the effect of the static type system. Consequently, we defined four groups
(combinations of the treatments of both factors) and randomly assigned subjects
to them. Since we felt that our task definitions are quite stable (from our expe-
rience with the previous experiments), we just defined one single programming
task. As programming languages, we used the language Dart.
16 Which was the results of the replication study by Kleinschmager et al. [16,24].
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Fig. 6. Results from type vs. documentation experiment (taken from [6])

Altogether, 23 subjects participated in the experiment. Figure 6 illustrates
the results of the experiment. The results were quite surprising. First, the factor
type system (still) turned out to be a significant factor (p < .05) and second,
the factor documentation was just approaching significance (p < .1).

We found the result of this experiment quite fascinating and asked ourselves
whether we should search more in this direction (other kinds of documentation,
other tasks, etc.) or whether we should go on comparing the results with other
factors. We decided to go into the second direction.

5.10 Comparing Types and Code Completion [7]

In the most recent experiment by Fisher and Hanenberg we started comparing
the effect of type systems with the effect achieved by code completion techniques.
If we want to compare both effect using a 2-factor design, it is necessary to find
a code completion technique that is available for a dynamically as well as a stat-
ically typed language. We decided to use MS VisualStudio which provides quite
good code completion for JavaScript as well as code completion for TypeScript,
a statically typed variant of JavaScript. We defined two programming tasks for
the computer game PacMan. Again, the code expected to be written was rela-
tively small. In contrast to the previous study, we decided to measure subjects
twice: with the static as well as with the dynamic type system. I.e. a subject
always worked with or without code completion.

Similar to the previous study, we were again able to see a significant impact
of the factor type system (p < .05), but (again) only a close to significant effect
of code completion (p < .1).

5.11 Summary and Conclusion of Experiment Series

The goal of the previous experience report was not to discuss too detailed each
single experiment. Instead, the goal was to give an idea, how the reasoning
process was applied in the presence of actual data. Each step in the experiment
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series was driven by the results of the previous step. At each step, there were
multiple possible following steps where we had to decide, what direction to fol-
low. The experiment series (that was not finished with the mentioned studies
but which is still ongoing, see for example [29]) illustrates that human-centered
studies do not have the idea in mind that there might be one single study that
possibly answers a given research question. Instead, studies should be to a cer-
tain extent be replicated, other alternatives should be taken into account and it
should be checked, how identified factors can be compared to other factors.

Still, the experiment series gave so far at least one relatively clear result:
static type systems do help in comparison to dynamically typed languages. And
do far, the experiments gave us the ability (and first evidence for) some working
theory that the main part of the static type system that helps is the type names
in the code.

6 Summary, Conclusion and Future Work

This paper introduces into the topic of quantitative evaluation of programming
languages. It first introduced into the general idea of empirical evaluation and
then focused on controlled experiments. In order to see how such studies are
actually applied, we introduced first two studies by other authors (one about
the use of optional types, the other about the impact of syntax). The first of
these studies was actually not a controlled trial but a code repository study.
However, the applied techniques were the same: The only difference was that
the experimenters did not have influence on the sample itself, i.e., by defining
the sample (the used set of projects) corresponding data is already given which
is not the case with typical human-centered studies.

Finally, we introduced a series of controlled experiments that we ran. We con-
sider this experiment series quite mature from the perspective that we gain over
and over comparable results. The goal for illustrating this experiment series in
more detail was to show the reasoning process underlying human-centered con-
trolled experiments. This hopefully gives readers not only the motivation but
also first ideas how other programming language constructs could be evaluated.
Because one thing seems to be clear: the situation that most programming lan-
guage constructs are hardly evaluated is a major problem in software science in
general that should be solved soon.
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Abstract. A large number of companies, especially in the automotive,
electronics, aerospace and defense domains, develop a portfolio of closely
related software products designed to satisfy similar, yet not identical,
needs of their customers (a.k.a. a software product line). Even though
numerous software product line engineering approaches promise to ease
the product line development and maintenance effort, in practice, the
adoption of such approaches is still limited. Instead, products are often
established ad-hoc, e.g., by copying existing variants and modifying them
to fit the requirements of a new customer or market segment.

In this paper, we discuss reasons leading organizations to employ
cloning to realize their product lines. We then present two strategies for
efficient management of cloned product variants: (1) the unification of the
variants into single-copy representations promoted by product line engi-
neering methods and (2) the construction of a management infrastructure
on top of existing cloned variants, to mitigate the shortcomings of cloning
while leveraging its benefits. We outline existing work that contributes
to the implementation of these two strategies and identify opportunities
for future research.

1 Introduction

Software surrounds us and drives our lives: most modern systems heavily rely
on software. Managing the complexity of these software systems is a challenging
task. It is even more challenging for Software Product Lines (SPL) – families
of software product variants with similar yet not identical functionality, com-
monly developed and maintained by companies in the automotive, electronics,
aerospace and defense domains.

To deal with the complexity of SPL development, Software Product Line
Engineering (SPLE) emerged as a software engineering discipline that promotes
predicted and managed software reuse. SPLE relies on capturing common and
variable software artifacts – entities that are part of all products of the prod-
uct line, and entities that are specific to some, but not all, products, respec-
tively [11,18,27,46,47,65]. Common and variable artifacts are traced to features:
high-level characteristics of product functionality [5]. The set of all product line
features, together with relationships between the features, is specified in a fea-
ture model [27]. A particular selection of features from a feature model defines
a concrete product of an SPL.
c© Springer International Publishing AG 2017
J. Cunha et al. (Eds.): GTTSE 2015, LNCS 10223, pp. 73–97, 2017.
DOI: 10.1007/978-3-319-60074-1 4
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Ad-Hoc So ware Product Line
(created by cloning and modifying exis ng variants)

Merge-refactoring Clone-based SPLE

 Managed So ware Product Line

Fig. 1. Approaches for transitioning from ad-hoc to well-managed software product
lines.

A set of software artifacts, a feature model, and traceability information
between features and their corresponding artifacts constitute an SPL architec-
ture. Individual products are specified by a particular feature selection and are
derived from an SPL architecture.

SPL architectures are largely divided into two categories: compositional
and annotative. Compositional SPL architectures group product artifacts into
distinct fragments, each corresponding to a particular feature. Derivation of a
specific product is then performed by composing a chosen set of fragments.
Annotative SPL representations rely on one “maximal” product in which anno-
tations indicate the artifacts that realize a particular feature. In such repre-
sentations, a specific product is derived by removing artifacts corresponding to
unselected features [7,30,31]. Intuitively, compositional architectures are similar
to the aspect-oriented programming paradigm while annotative architectures are
similar to code parameterized with preprocessor directives.

SPLE approaches promise to ease product line development and mainte-
nance; improve time-to-market and quality; reduce portfolio size, engineering
costs, and more [11,46]. Yet, in practice, the adoption of these approaches is
still limited and reuse of artifacts between products rather occurs ad-hoc, in an
opportunistic manner. One popular form of ad-hoc reuse is cloning, where an
existing product variant is simply copied or placed in a separate branch of a ver-
sion control system, and later modified to fit the requirements of a new customer
or market segment (the “clone-and-own” approach).

In this paper, we outline reasons behind the lack of adoption of advanced
SPLE approaches. We then discuss the benefits and shortcomings of cloning and
describe two main directions for moving forward (see Fig. 1). The first direc-
tion relies on unifying cloned products into single-copy representations proposed
by SPLE approaches1 (we call this a merge-refactoring approach). The second
direction proposes to build an efficient management infrastructure on top of
existing cloned products, mitigating the shortcomings of cloning while leverag-
ing its benefits (we call this a clone-based SPLE approach). The management

1 We mostly focus on producing annotative SPL architectures: these architectures
appear to be more intuitive to practitioners as they do not require a paradigm shift
in the way software is being developed, especially in the embedded domain, where
predecessor directives are commonly used [7,49].
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infrastructure captures essential product line constructs such as features, depen-
dencies between features, as well as traceability information between the features
and their implementation artifacts. As such, it defines a new type of SPL archi-
tectures – the one that is built on top of existing clones.

In what follows, we describe these directions in detail, outline existing work
in the area, and provide suggestions for future work that leads to more effi-
cient management of cloned product variants. Specifically, the remainder of the
paper is structured as follows: Sect. 2 sets the scene by discussing existing SPL
cloning practices in industry. Section 3 introduces the annotative SPLE app-
roach. Section 4 focuses on merge-refactorings, while Sect. 5 describes the cloned-
based SPLE approach. Section 6 outlines possible future directions. Finally,
Sect. 7 summarizes and concludes the paper.

2 Cloned Software Product Lines in Industry

The first step towards improving existing cloning practices is to gain a bet-
ter understanding of their perceived benefits and shortcomings. We thus start
by presenting the results of an empirical study that investigates experiences of
developers in six industrial software product lines realized via cloning [15]. We
describe the cloning practices using a fictitious, but representative, company
GlobalCo that delivers GPS solutions (see Fig. 2).

Layered Map

Trip Computer

POI

Live Traffic Info

GPS-Pro GPS-EZ

3D Building

Night Mode
Shortest Time 

Rou�ng

Layered Map
POI

Fig. 2. GlobalCo products.

2.1 Developing SPLs with Clones

GlobalCo develops an advanced product, GPS-Pro, that has the Trip Computer

feature for monitoring the vehicle speed and the time to destination, and the
Layered Map feature for overlaying graphical objects on the map. As the product
has been tested and released to the market, GlobalCo’s market analysis reveals
the need for a simplified and less expensive product variant, GPS-EZ. Layered Map

is determined to be the only essential feature of this product, while Trip Computer

should not be included.
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The goal of the company now is to release the new product to the market
as fast as possible. Efficient management of reuse, although important, is hardly
considered a priority. The easiest way for the development team responsible for
GPS-EZ to cope with this request is thus to branch the already tested code of
GPS-Pro and remove the Trip Computer feature implementation from it.

From this point on, however, the two product variants become independent
from each other and their corresponding implementations grow apart. As the
number of cloned variants and the differences between their implementations
increase, it becomes difficult to keep track of changes made to each of the variants
and propagate the changes between them. In our scenario, imagine that the
development of GPS-Pro continues, adding the ability to show points of interests
(POI) and Live Traffic Info as two additional layers on the map. The team also
extends the product with Night Mode and Shortest Time Routing features.

Later, it is decided to borrow the POI feature from GPS-Pro and use it in
GPS-EZ as well. The implementation of this feature should then be identified,
detached from the rest of the code of GPS-Pro and copied to GPS-EZ. Indepen-
dently, the development team of GPS-EZ implements the ability to show 3D Build-

ings as an additional layer on the map. The team also implements an extension
to the POI feature copied from GPS-Pro, but cannot immediately propagate the
change back to that product because it is currently frozen towards a close release.
The two products not only have a different set of features now, but two seem-
ingly identical features have different implementations in the distinct products,
challenging the portfolio management task.

Due to a lack of information about the dependencies between features, bor-
rowing the Night Mode and Shortest Time Routing features from GPS-Pro is an
additional challenge: the Night Mode feature might not work well with 3D Build-

ings, because it was not designed to work with that functionality as GPS-Pro
does not contain it. Shortest Time Routing depends on the Live Traffic Info feature
that is not available in GPS-EZ. Moreover, if GlobalCo now decides to establish
a new product variant that has the Layered Map, POI, Night Mode and 3d Buildings

features, it is unclear which product should be used as a starting point, and how
to remove their unnecessary features while borrowing the required features from
other products.

2.2 Main Benefits and Shortcoming of Cloning

Interviews with industrial practitioners participating in the study [15] showed
that companies often rely on cloning to realize their SPLs because they do not
plan upfront to develop a product family. Instead, as in the GlobalCo exam-
ple, the companies incrementally grow their product portfolios as they become
successful and as new customers require modified variants of already existing
products. Companies mostly focus on making sure these individual products are
delivered on time and postpone dealing with reuse issues to the future.

In such reality, cloning is perceived to be a simple yet efficient reuse mech-
anism that saves time and resources: unlike advanced SPLE solutions proposed
in the literature, it does not require any upfront investment. Moreover, it allows
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participants to start the development from an already implemented and veri-
fied set of artifacts. At the same time, it provides independence and freedom to
change these artifacts as needed.

Yet, adapting cloned artifacts to the new needs might involve a significant
effort. The effort in maintaining the artifacts also increases because some tasks
need to be performed on each cloned copy. Knowledge about reuse is rarely
maintained. Thus, propagating modifications between clones is not a trivial task.

Table 1 summarizes the main benefits and shortcomings of cloning that
emerged from the study.

Table 1. Main benefits and shortcomings of cloning [15].

Benefits Shortcomings

– No upfront investment
– Rapidly available
– Reuse of verified code
– Developer independence

Difficult to:
– Reconcile changes
– Share features
– Establish new variants

2.3 Conclusions

We draw two main conclusions from the study: first, any approach that aspires
to be better than cloning has to address the perceived benefits of cloning, such
as simplicity, availability, and developer independence. Without such argument,
many SPLE approaches fail to convince practitioners that they would yield bet-
ter results. Second, even if a company decides to make a transition for cloned
to a well-managed SPL approach, such transition is a time- and labor-intensive
task by itself; the overhead related to this task should be comparably lower than
the overall overhead related to the management of existing clones. Automation
plays a crucial role here: providing support for automating the transition will
streamline SPLE adoption in practice.

In what follows, we discuss automated approaches for unifying cloned variants
into a single-copy SPLE representation (Sect. 4). We also present an alternative
approach for building a management infrastructure on top of existing clones, to
reduce the overhead of cloning while maintaining its advantages (Sect. 5). Before
that, we give a more rigid definition of an annotative SPLE architecture.

3 Software Product Line Engineering

The Software Product Line Engineering paradigm separates two processes:
domain and application engineering (see Fig. 3 taken from [47]). The first
process, domain engineering, is responsible for establishing an SPL architecture
and defining the commonalities and variabilities of a software product line. The
second process, application engineering, is responsible for deriving individual
products (a.k.a. variants or applications) from the SPL architecture established
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during domain engineering. It exploits the variability of the product line and
ensures the correct binding of the variability according to the applications’ spe-
cific needs. In this paper, we focus on an automated feature-driven annotative
SPL approach [7,13,30,31] which we describe below.

3.1 Domain Engineering

The SPL architecture created during the domain engineering phase represents
all possible products of a product line (a.k.a. a 150% view). As schematically
shown in Fig. 4, artifacts of the architecture, i.e., requirements, tests, design and
implementation elements, are annotated by features.

The exact type and granularity of artifacts depend on the development
process that a specific organization employs. We thus loosely define artifacts
as follows:

Definition 3.1. (Artifact2) An artifact is a tangible by-product produced dur-
ing the development of software. Some artifacts, such as class diagrams, require-
ments, and design documents help describe the architecture and design of soft-
ware. Other artifacts, such as code elements, executable models and tests are
concerned with the implementation and validation of software.

A feature typically consists of a label and a short description that identifies
its functionality [9]. For conciseness, either label or feature description can be
dropped when clear from the context. While there is no universal agreement on
what a feature is (and what it is not), we adopt the definition by Kang et al. [29]:

Fig. 3. SPLE: domain and application engineering [47].

2 Adapted from http://en.wikipedia.org/wiki/Artifact (software development).

http://en.wikipedia.org/wiki/Artifact_(software_development)
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Fig. 4. Feature-driven annotative SPL representations.
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Fig. 5. Vending machine SPL architecture.

Definition 3.2. (Feature [9,29]) A feature is a distinctively identifiable func-
tional abstraction that must be implemented, tested, delivered, and maintained.
A feature consists of a label and a short description that identifies its behavior.

Annotative product line approaches assume that a feature annotates all arti-
facts that contribute to its implementation. A feature can annotate one or more
artifacts; an artifact can be annotated by one or more features. We also say that
artifacts are traced to the feature they implement. A feature and its implementa-
tion constitute a functionality of an individual product or an entire product line.

Definition 3.3. A functionality of a product or a product line is a feature and
its corresponding feature implementation – a set of artifacts annotated by that
feature.

It is up to a particular SPL architecture to decide on the granularity of
annotations, e.g., whether features annotate complete functions of source code or
individual statements. Likewise, in models, features can annotate coarse- or fine-
grained artifacts, e.g., complete statecharts or individual states and transitions.

Figure 5 shows an example of a “toy” vending machine SPL architecture
taken from [10]. Artifacts of this architecture are states and transitions in a tran-
sition system. These artifacts are annotated by seven vending machine features:
cancel, soda, tea, pay, free, compartment and accessible. In this example, annotations
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Fig. 6. Vending machine variants derived from the SPL architecture in Fig. 5.

are represented by appending the feature label in square brackets to the elements
annotated by that feature. For instance, transitions #1 and #2 in Fig. 5 are
annotated by the feature pay.

The vending machine SPL architecture “encodes” numerous variants. The
functionality of each variant is defined by the subset of features that comprise
it. Given a feature subset, the corresponding variant is derived from the SPL
architecture during the application engineering phase, as explained later in this
chapter. For example, a vending machine variant in Fig. 6(a) implements func-
tionality defined by the pay, soda, and compartment features. It accepts payment,
returns change, allows to select soda, and serves it. It then opens a compartment
allowing the user to take the drink, and, when taken, closes the compartment.
Another variant of the vending machine that implements functionality defined
by the pay, soda, tea, and compartment features is shown in Fig. 6(b). It allows the
user to choose either soda or tea and then serves the chosen drink. Yet another
variant, in Fig. 6(c), implements functionality defined by the pay, cancel, soda, and
compartment features. It allows the user to cancel the purchase before selecting
the drink and returns the paid amount. The one in Fig. 6(d) offers free drinks
and is fully accessible, i.e., does not open or close the beverage compartment. It
implements functionality defined by features free, soda, and accessible.

Obviously, not all functionality combinations are reasonable or desirable. For
example, having both pay and free options together, as well as having both com-

partment and accessible options, do not make sense. Likewise, having a vending
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Fig. 7. Vending machine feature model.

machine variant which serves no drinks – neither soda nor tea – is unreason-
able. Constraints on valid functionality combinations are expressed in a feature
model [27]. A feature model is a rooted tree whose nodes are feature labels.
Relationships between parent and child features in the tree commonly include:

– mandatory : a child feature must be selected when its parent is selected;
– optional : a child feature might be selected when its parent is selected;
– or-group: at least one of the sub-features must be selected when the parent

is selected;
– xor-group (a.k.a. alternatives): exactly one of the sub-features must be

selected when the parent is selected.

In addition to the main hierarchy, cross-tree constraints can be used to describe
dependencies between arbitrary features. Commonly used cross-tree constraints
are:

– requires: if one feature is selected the other needs to be selected as well;
– excludes: two features mutually exclude each other.

An example of a feature model for the vending machine product line is given
in Fig. 7. It has one optional feature: cancel; an or-group with features soda and
tea; and two groups of alternative features: the first includes pay and free while
the second – compartment and accessible.

Following [60], a feature model can be represented as a set of features and
a Boolean formula that encodes the relationships between these features. For
the example in Fig. 7, the formula that represents the relationships between the
features is (soda∨tea)∧(pay⊕free)∧(compartment⊕accessible).

A feature model configuration is then a subset of features that “respect” the
formula, i.e., for which the formula evaluates to true. Valid configurations include
soda, pay, and compartment (which corresponds to the product in Fig. 6(a)), soda,
pay, cancel, and compartment (which corresponds to the product in Fig. 6(c))
and more.

Definitions 3.4 and 3.5 below formally describe the notion of a feature model,
feature model configuration and an SPL architecture.

Definition 3.4. (Feature Model and Configuration – simplified version of [60])
Given a universe of elements F that represent features, a feature model FM =
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〈F , ϕ〉 is a set of features F ∈ 2F and a propositional formula ϕ defined over
the features from F . A feature configuration ̂FM of FM is a set of selected
features from F that respect ϕ (i.e., ϕ evaluates to true when each variable f of
ϕ is substituted by true if f ∈ ̂FM and by false otherwise.)

Definition 3.5. (SPL Architecture – simplified version of [6]) Given a universe
of elements A that represent artifacts at a certain granularity level, an SPL
architecture PL = 〈FM,M,R〉 is a triple, where FM is a feature model, M ∈
2A is a domain model, and R ⊆ F × M is a set of relationships that annotate
elements of M by features of F .

3.2 Application Engineering

As mentioned earlier, individual products are defined by a subset of features
that correspond to the desired product functionality – a feature model configu-
ration. Given a feature model configuration, a product is derived from the SPL
architecture by removing domain model artifacts annotated by features that are
excluded from the configuration.

Below, we formally describe the product derivation process. We denote by
Δ the mapping between an artifact of the domain model and the corresponding
artifact of the derived product. For example, let a refer to transition #12 in
Figs. 5 and â refer to transition #1 in Fig. 6(d). Then, under the configuration
that includes features soda, free, and accessible, Δ(a) = â.

Definition 3.6. (Product Derivation – adapted from [6]) Let PL = 〈FM,

M,R〉 be an SPL architecture and let ̂FM be one of its feature model config-
urations. A set of elements M̂ is derived from the architecture PL under the
configuration ̂FM, denoted by M̂ = Δ(PL, ̂FM), if and only if the following
properties hold:
(a) An element belongs to the derived product if and only if this element is anno-

tated by a feature of the feature configuration ̂FM (under which the deriva-
tion was performed): ∀m ∈ M,Δ(m) ∈ M̂ ⇔ ∃f ∈ ̂FM · (f,m) ∈ R.

(b) Only one element can be derived from a given domain model element:
∀m ∈ M,∃!m̂ ∈ M̂ · m̂ = Δ(m).

(c) Only derived elements are present in the derived model: ∀m̂ ∈ M̂,∃!m ∈
M · m̂ = Δ(m).

We rely on concepts established in this section in the remainder of the paper.

4 Merge-Refactoring Approaches

In this section, we focus on merge-refactoring approaches that transform a
set of cloned product variants into an annotative SPL representation. For the
GlobalCo example presented in Sect. 2, this translates to merging the branches
of GPS-Pro and GPS-EZ while unifying commonalities at the code level (i.e., build-
ing a domain model – see Sect. 4.1), tracing variabilities to their corresponding
features (i.e., building annotations – see Sect. 4.2), and identifying relationships
between these features (i.e., building a feature model – see Sect. 4.2).
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4.1 Building a Domain Model

Most existing merge-refactoring approaches largely focus on building the domain
model (a.k.a. the 150% product line representation). The main goal of this
process is to establish correspondences between similar elements in distinct prod-
uct variants, and then unify these elements so they appear in the domain model
only once. Building such representation for the entire product line eliminates
duplications and explicates differences between existing variants.

More formally, the domain model construction process identifies tuples of
elements: sets of elements from distinct variants that are considered similar to
each other3. Elements of each tuple are then unified. The process relies on a
combination of the following three functions [49,53,62]:

– Compare is a heuristic function that establishes the similarity degree, a num-
ber between 0 and 1, for a tuple of elements4. Compare is a domain-specific
function, i.e., the exact way of calculating the similarity degree between ele-
ments is determined by the original domain of these elements. For example,
a similarity degree between classes is often calculated as a weighted sum of
the similarity degrees of their sub-elements: names, attributes, operations,
etc. [67].
Numerous specific implementations calculate the similarity degree between
pairs of input elements by comparing their corresponding sub-elements [32,45,
67]. Some approaches [45] also utilize behavioral properties of the compared
elements, e.g., dynamic behaviors of states in the compared state machines,
similar to checking bisimilarity. There are also approaches that extend beyond
a pairwise comparison of input elements, i.e., establish similarity degrees for
tuples longer than two [53,62].

– Match is a heuristic function that selects, from the set of all possible tuples,
those tuples whose elements are to be unified. It relies on compare to judge
the “quality” of each considered tuple.
There are several ways to implement match. Some approaches use empirically
established similarity thresholds to pick “strong” tuples that are good can-
didates for containing similar elements [45,49,54]. Other approaches strive
to produce an “optimal merge”– a disjoint set of tuples with maximal total
weight (defined as the sum of weights of all tuples in the set). As this prob-
lem is known to be NP-hard, these approaches rely on heuristic algorithms
to compute matching solutions [53]. Another set of solutions apply clustering
techniques to produce matches by grouping similar elements together, e.g.,
agglomerative clustering applied by Strueber et al. [62]; clustering algorithms,
in turn, rely on results of compare to decide on the similarly between elements
in a group.

– Compose is a function that takes as input a set of tuples produced by match
(i.e., groups of elements that are considered similar to each other) and unifies

3 We do not allow combining elements from the same variant. Hence, a tuple cannot
contain elements from the same variant.

4 The similarity degree for a tuple is also referred to as the tuple weight.
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elements in each tuple, ensuring that matched elements appear in the resulting
model only once. To produce a target product line representation, identical
parts of the matched elements are put together while non-identical parts
are annotated with features. Similar to compare, compose is also a domain-
specific function: the granularity of unification, as well as the way in which
annotations are represented, is defined by the elements’ domain.

4.2 Building a Feature Model and Annotations

Automatically identifying product line features and relationships between these
features is a challenging task. The simplest approach adopted by several merge-
refactoring techniques [49,54,62] is to define one feature per each input product
variant. Domain model elements are then annotated by these features according
to the product(s) that contributed them. That is, a feature fPi

annotates all
non-common domain model artifacts that originated from the product Pi. All
features representing original products are then defined as alternatives to each
other. In that way, only the original products can be derived from the constructed
product line representation; mixing features from different product is disallowed
because that can result in unexpected feature interactions not considered so far.

Automating the identification of “semantic” features bearing a meaning for
a human, as well as identifying possible synergies and potential interactions
between features that did not appear together in any of the existing products,
is still an open research direction. Moreover, multiple possible valid annota-
tive SPL representations are possible, which are varied by the way features
are selected and elements are combined [54]. Without further information, it
is unclear which of these representations captures the user’s intention the best.
For that reason, even though there is a number of approaches that attempt to
automate the complete merge-refactorings process in the context of industrial
product lines [36,49,58,62,69], most existing work provides semi-automated or
even manual solutions [3,16,22,25,26,28,34,35].

In reality, “simple” product lines that are easy to re-engineer manually often
can also be efficiently managed as clones. Cloning stops scaling when the num-
ber of products grows and when these products further grow apart. In such
cases, manual merge-refactoring is a time-consuming process that takes several
years [22,25,26]. Meanwhile, companies still need to maintain product variants
as distinct clones. Hence, focusing on merge-refactorings only is insufficient for
addressing the needs of industrial practitioners. Next, we describe the clone-
based SPLE approach that aims at improving the management of clones. Such
an approach has potential to ease future merge refactorings or even eliminate
the need to perform them altogether.

5 A Clone-Based SPLE Approach

In this section, we describe an approach for building a management infrastruc-
ture on top of existing cloned product variants, mitigating the shortcomings of
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cloning while leveraging its benefits. The management infrastructure helps the
developers to capture essential product line constructs such as features, depen-
dencies between features, as well as traceability information between the features
and their implementation artifacts. For the GlobalCo case, it provides a global
view on the set of specific changes performed by each team, making it appar-
ent that the POI feature works differently in GPS-Pro and GPS-EZ, and that the
Shortest Time Routing feature requires the Live Traffic Info in order to operate.

The main difference between the clone-based SPLE and the merge-refactoring
approaches is that in the former, the information about features, their depen-
dencies, and their relations to product artifacts do not need to be computed
“all at once”. Instead, this information is collected incrementally, only when
needed. Each investment in extending the clone management infrastructure with
additional information has “revenue“ for the developers, in terms of easing the
management of clones. Interestingly, the knowledge collected by the clone man-
agement infrastructure can also facilitate future merge-refactoring, if an organi-
zation eventually decides to take that direction.

The clone-based SPLE management infrastructure specifies a set of six con-
ceptual operators, which we present next. We also show how the operators can be
combined to realize product line development tasks. We discuss possible imple-
mentations of the operators and identify the remaining gaps.

5.1 Clone-Based SPLE Management Operators

Formal definitions of the clone-based SPLE management operators [51,55,56]
are summarized in Table 2. We discuss and exemplify the operators using the
vending machine example in Fig. 6. In what follows, we use the term feature-
oriented system (a.k.a. system) to refer to a feature model and a set of artifacts
annotated by features of that model. A feature-oriented system can represent
both an SPL architecture and an individual product variant. In the latter case,
the feature model only includes those features that were selected when deriving
the variant from an SPL architecture.

Table 2. Operators for managing cloned variants.

Operator Input Output

1 findFeatures variant set of features

2. findFeatureImplementation f × variant × property feature impl.

3 dependsOn? <f 1, variant> × <f 2, variant> × property set of witnesses

4 same? <f 1, variant1> × <f 2, variant2> × property set of witnesses

5 interact? set of < fi, varianti > × property set of witnesses

6 merge system1 × . . .× systemn × matches × resolution system

1. findFeatures returns a set of features, i.e., <feature label, description>
pairs, realized by the given product variant. For the vending machine in
Fig. 6(b), the features include <soda, sells soda>, <tea, sells tea> and <pay,

allows to pay for the drink being purchased>.
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2. findFeatureImplementation, commonly known as feature location, returns
a feature implementation of the given feature f – the set of artifacts that
realize the input feature. We say that these artifacts are traced to the fea-
ture. The exact form of the detected feature implementation depends on the
goal of feature location: e.g., “detect the artifacts that contribute only to
the feature of interest” or “detect all artifacts required for the feature to be
executable (including the main method of a program)”. We declaratively rep-
resent this goal using the input property that specifies inclusion and exclusion
conditions for the feature location process. For example, transitions 1 and 2
of the vending machine in Fig. 6(b) realize the pay feature w.r.t. the property
which disregards transitions contributing to other features, such as soda and
tea.

3. dependsOn? determines whether the functionality described by feature f1
requires the functionality described by feature f2 from the same product
variant in order to operate. The input property captures the nature of the
dependsOn dependency. Such a property can express simple dependencies
such as “f1 requires f2 in order to compile”, or more complex behavior depen-
dencies. The latter could be given as formal specifications or as a set of tests.
For our example in Fig. 6(b), the soda functionality requires the pay function-
ality w.r.t. the property “soda is served only after a payment is received”.
The operator returns a set of witnesses, each demonstrating the dependsOn
relationship between the artifacts of f1 and f2 (or none if the functionalities
are independent). In the example above, a witness is the flow between the
artifacts implementing the pay and soda features: transitions 1 and 2, imple-
menting the first one, precede transitions 3 and 4, implementing the second.

4. same? determines whether the functionality described by feature f1 of vari-
ant1 is consistent with the functionality described by feature f2 of variant2,
i.e., whether there are no disagreements in both the features and the imple-
mentations of the two seemingly equivalent functionalities. For the products
in Fig. 6, the compartment feature, allowing one to take the ordered drink,
is implemented similarly in Figs. 6(a), (b), and (c), by transitions 5–7. These
three product variants are in agreement on the implementation of the feature.
Although feature accessible in Fig. 6(d) implements a similar functionality, this
feature is implemented only by transition 4 since the corresponding product
does not need to open and close the beverage compartment. Thus, this fea-
ture implementation “disagrees” with the implementation of the compartment

feature in the first three variants.
Like dependsOn?, the same? operator uses a property that specifies disagree-
ments of interest and returns a set of witnesses exemplifying the disagree-
ments (or none if the features agree). A simple form of disagreement is when
features have different implementations, as in the above example. In that
case, a witness could include artifacts that distinguish between the corre-
sponding feature implementations. Disagreements can also be semantic, e.g.,
when checking for behavioral properties rather than the syntax of the imple-
menting artifacts.
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Table 3. Analyzed companies.

Company #1 Company #2 Company #3

Domain Aerospace Electric motor controllers Aerospace and Defense

Process – V model (strictly waterfall)

– Model-centric, with full

requirements-to-code traceability

– DO-178B certified

– Iterative –Code-centric – Iterative

– Code-centric

– Requirements managed by a

requirements management tool

but no traceability to code is

maintained

– Requirements-based testing

Artifacts – System and software requirements

– Executable design models (code is

generated)

– Tests

– C/C++ code – Tests – Textual requirements

– C/C++ code

– Tests

5. interact? determines whether combining functionalities described by a set
of features would alter the behavior of one or more of those functionalities.
The input property specifies the form of interactions to be checked and the
output set of witnesses exemplifies them. For example, a composition of func-
tionalities described by features pay and free from the transition systems in
Figs. 6(a) and (d) might result in a transition system where the transition pay

follows free: one has to pay after requesting a free drink, clearly violating the
main behavioral property of the free feature.

6. merge puts together functionalities of the n input systems. It can be used for
combining individual features (systems with a single feature each) or adding
a feature to an existing product (systems with a single feature combined
with a system representing a well-formed product). The matches parame-
ter specifies artifacts that are considered similar and should be unified in
the combined representation (see Sect. 4 for a more detailed discussion on
matching). In addition, the resolution parameter declaratively specifies how
to resolve disagreements and interactions between the input functionalities,
e.g., by overriding one feature implementation with another, integrating the
implementations together (thus producing a “merged” implementation), or
keeping both as separate functionalities (with distinct feature declarations).
For example, when borrowing features from transition systems in Figs. 6(a)
and using them in the system in Fig. 6(d), one might choose to override the
behavior of the accessible feature in Fig. 6(d) with the behavior of the compart-

ment feature in Fig. 6(a), or keep both behaviors as alternatives.

5.2 Composition of the Operators

The clone-based management operators stem from interactions with numerous
companies that use cloning to realize product lines and from reports published
in the literature. In this section, we describe typical activities related to mainte-
nance and evolution of existing clones and show that these activities can be
mapped to instances of the conceptual operators. We thus demonstrate the
applicability of the operators to improve the cloning experience and to support
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the clone-based SPLE approach. Our discussion is based on the detailed analy-
sis of clone-related activities performed in three industrial companies [55,56].
Table 3 gives a high-level description of these companies.

Activity 1: Propagate changes between variants
Changes made in one cloned variant might be useful in another. To
locate such changes, correspondences between features of a variant (detected
using findFeatures) and the artifacts that implement them (detected using
findFeatureImplementation) are established. Differences between distinct
implementations of the same feature (detected using same? and represented
by a set of witnesses) are inspected and propagated between variants. In the
simplest form, the differences can be detected using a textual difference tool.
Detecting more sophisticated behavioral differences is also possible, e.g., using
the technique proposed by Jackson and Ladd [24].

Activity 2: Share features between variants
Like individual changes, complete features can be shared between dis-
tinct product variants. Here, again, a list of features, together with traces
to implementation-level artifacts, is identified and maintained (instances of
findFeatures and findFeature- Implementation). See the work of Li et al.
on History Slicing [41,42] for some steps in that direction.

Different implementations of the chosen feature of interest are compared to
each other (using same?), selecting the one found most appropriate. Further,
the set of other features it requires (detected using dependsOn?) is inspected. If
those features are not part of the target product, some of their artifacts have to
be transferred to the target product together with the selected feature, to ensure
its correct operation [57].

Next, the interact? operator verifies whether the new feature interferes with
the functionality of the existing ones in the target product variant. Following
that, merge integrates the selected feature and those that it requires in the
target system, resolving the conflicts identified by interact?.

Activity 3: Retire features
While new features are added, some of the existing features might no
longer be needed. Like in the previous activities, the set of features and
their corresponding implementations is detected (using findFeatures and
findFeatureImplementation) and features that depend on the one being
removed are identified (using dependsOn?). Since the functionality of such fea-
tures should not be affected by the feature retirement, artifacts that these fea-
tures use are not removed.

Activity 4: Establish new variants
When creating a new product, the feature portfolio of all existing variants
(detected using findFeatures) is inspected, and the variant with the most sim-
ilar functionality is used as a starting point for cloning. Then, features that
are not required in this variant are removed, as described in Activity 3, while
additional features are either developed from scratch or “borrowed” from other
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variants, as described in Activity 2. Instead of removing features, one could also
mark them as optional, to start introducing variability that eventually leads to
a single copy SPL representation.

5.3 Implementing the Operators

At the time of writing, we are not aware of a complete solution that implements
most of the operators and/or can be used to manage clone-based SPLs. In this
section, we outline individual approaches for implementing the operators and
identify obvious gaps. This discussion aims at helping researchers and practi-
tioners to scope and structure the required automation, reuse existing work, and
identify research opportunities. It also allows companies to estimate the invest-
ment they need to make in order to improve their reuse practices, as they can
reason about the management of clones in terms of existing and missing operator
support.

findFeatureImplementation (a.k.a. feature location) and interact? (a.k.a.
feature interaction) are by far the most studied operators. Over 20 different
feature location techniques for source code have been developed [52]. Recently,
a number of feature location techniques were designed explicitly for the product
line context [43,50,68]. These techniques leverage information available when
considering multiple product variants together.

Yet, it is often unclear how to compare techniques based on the features
they detect, what the exact properties of the located feature implementations
are, and how to extend these approaches to allow users to specify the desired
properties of the location process. Also, feature location techniques for artifacts
other than code, e.g., models, are poorly studied. Model slicing approaches can
be seen as initial steps towards addressing this problem [1,38,39,63], but further
investment in these techniques is still needed.

Feature interaction techniques (interact?) have also received significant
attention, especially in the telecommunications domain [70]. Most of the exist-
ing approaches, however, deal with pairwise feature interactions. They have to
be extended to consider interactions between sets of features that are part of
real-life products: such sets can introduce interactions that are not detectable in
a pairwise manner. Also, the applicability of many techniques for analyzing fea-
ture interactions is limited because they are designed to work on special-purpose
models rather than unstructured slices of product artifacts that correspond to
feature implementations.

Compare and merge techniques, for both code and models [17,45,61], as
well as aspect weaving [33] and feature-oriented composition approaches [2],
can be used to realize merge. Such techniques need to be extended to allow
specifying the desired resolutions. Also, the techniques should be able to deal
with unstructured product slices rather than complete, well-formed products or
features declared in a specific manner.

Syntactic and semantic comparison techniques [23] can be used to implement
the operator same?. The implementation of the operator for textual documents
can be based on analyzing lexical similarities, e.g., using the Levenshtein distance
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findFeatures findFeatureImpl. dependsOn? same? interact? merge

Textual documents Short textual documents, e.g., 
requirements.

Levenshtein distance Case study #1

UML class diagrams Compared models have common 
ancestors. Elements are compared 
based on their unique ids.

IBM Ra�onal So�ware 
Architect

...

UML class diagrams UMLDiff ...Elements with similar names are likely 
to be similar.

Input Assump�ons Exis�ng Implementa�ons Usage Examples

Fig. 8. An initial sketch of the knowledge-based library.

metric [40] or textual diff tools [44]. For model-level artifacts, various model
comparison and matching techniques can be used [61]. Comparison of code-level
artifacts can also rely on tools that attempt to detect semantic differences, e.g.,
[24], or on more sophisticated implementations based on code clone detection [4].
Yet, like in the previous cases, additional work is required to adapt these works
for analyzing unstructured feature implementations and declaratively obtaining
the desired properties of the analysis.

Code analysis techniques, e.g., program slicing [64], can be used to implement
dependsOn?. However, to the best of our knowledge, there are no dedicated
works focusing on detecting semantic dependencies between model- or code-level
functionalities. Such works, when developed, should clearly specify the nature
of the detected dependencies and even be parameterizable to make it possible
retrieving dependencies of a desired type.

findFeatures is yet another operator largely unstudied so far. Chen et al. [8],
Weston et al. [66] and Davril et al. [14] describe techniques for extracting a fea-
ture model from informal specifications or publicly available product descriptions
found online. These can be seen as initial implementations of findFeatures.
However, the constructed feature model only includes features described in the
documentation of the existing products rather than features implemented “in
reality”. Such approaches could be augmented with techniques that decouple
product code [21], and then concisely summarize each part individually [48].

Organization-Specific Implementation of the Operators. The operator-
based view provides a systematic approach for understanding the required,
existing, and missing functionality. However, the specific implementation of the
operators can differ between organizations and domains as no “generic” solution
can work for all cases. Organizing existing implementations in an operator-based
manner while explicating the exact assumptions made by these implementations,
as sketched in Fig. 8, can assist both researchers and practitioners interested in
improving reuse practices in families of related products. Exposing organiza-
tions to existing implementations of the operators and helping understand their
applicability can enable reuse of implementations across organizations with sim-
ilar needs. Researchers and tool developers can use this body of knowledge to
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focus their effort on functionality that is missing. As such, “crowdsourcing” of
existing support can eventually lead to an increased quality and a larger spec-
trum of available solutions.

6 Future Research Directions

In this section, we outline future research directions that, according to our expe-
rience, can facilitate the transition from ad-hoc cloning to mature SPL manage-
ment, promoting adoption of SPLE approaches in practice.

6.1 Economic Effectiveness of SPLE

Very little quantitative data is available to back up the claimed benefits of SPLE
approaches – improved time-to-market and product quality, better market pen-
etration and more. The majority of existing reports on the successful adop-
tion of SPLE practices, including those published in the SPLC Hall of Fame5,
present mostly qualitative data that indicates or hints towards possible improve-
ments. There are also no reports comparing the effort involved in maintaining
a managed SPL versus an ad-hoc (e.g., cloned) one. It is of little surprise then
that “convincing” industrial organizations to convert their development prac-
tices to follow SPLE is a challenging task. Furthermore, there is usually no way
to compare the situational context in which product line approaches have been
introduced, making it difficult to know if the approaches being touted are even
relevant to a specific organization. All these factors impede adoption of SPLE in
industry and also prevent a realistic comparison of numerous existing approaches
to each other.

As part of future work, it is essential to engage the community in a more
rigorous measurement and reporting system for quantifying business benefits
associated with the introduction of SPLE approaches and measuring the effort
of a transition from ad-hoc to well-managed reuse. Approaches and financial
models for tackling technical debt can serve as an inspiration here [12,37]. Com-
paring different transition strategies, e.g., a bottom-up one that starts from
analyzing and re-engineering code artifacts to a top-down strategy that starts
from documentation and product requirements, would be beneficial. Further-
more, quantifying business benefits (or losses) associated with SPLE adoption
and the context in which SPLE was applied will also make it possible to com-
pare different SPLE technique to each other, assisting practitioners in making
educated decisions when choosing an approach that best fits their goals and
requirements. Such efforts are expected to benefit researchers, solution develop-
ers, and industrial organizations by allowing them to understand, measure, and
report on the return on investment when shifting to SPLE.

5 http://splc.net/fame.html.

http://splc.net/fame.html
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6.2 Clone-Based SPLE Approaches

This paper highlighted several qualities of cloning that are appealing to prac-
titioners, such as availability and independence of developers. Leveraging these
qualities and developing structured SPLE approaches that are based on cloning
(rather than trying to eliminate cloning) appears to be a direction that is
worth further investigation. Initial work on exploring the space of clone-based
SPLE approaches and defining the set of operators required for their manage-
ment [51,55–57] is likely still incomplete; a more focused view on clone-based
SPLE practices is required.

In addition, in practice, most clone variants are maintained as branches/
streams in Software Configuration Management (SCM) systems. Integrating
SPLE management mechanisms on top of existing SCM systems appears to be
a promising direction, which we only started to explore [41,42,57]. SCM-based
approaches will let the user reason about the developed product line in terms
of features rather than individual code changes made in distinct branches, will
detect and maintain semantic dependencies and inconsistencies in implementa-
tions of features, and will contain feature provenance information.

Earlier works that focused on improving the maintenance of SCM branches
might become relevant for this task. For example, Sarma et al. [20,59] suggest
promoting team awareness by sharing information about changes and potential
conflicts across branches of an SCM system. Both Gulla et al. [19] and Zeller
et al. [71] propose to capture composition constraints between different versions
of software components that are stored in an SCM system; these approaches
allow the user to assemble a configuration containing just those component ver-
sions that satisfy the composition constraints. It might be beneficial to explore
the applicability of these works to the SPLE context.

6.3 Improvements of the Cloned Product Line Management
Framework

The clone-based management framework stems from interactions with numerous
companies that use cloning to realize product lines and from reports published
in the literature. Even though it was shown that the current set of operators is
reasonable for expressing development activities related to clone management in
the studied organizations [55,56], additional effort is required to refine the set
of operators and their interfaces based on a larger set of case studies. Identify-
ing and classifying contexts in which the operators are automatable, as well as
quantifying the cost of providing such automation, is also still needed. Future
studies addressing these questions will be of value.

A substantial amount of work also remains in devising techniques that realize
the operators, in cases where such realizations are missing. The realization of
some operators, such as findFeatures and dependsOn?, was, to the best of our
knowledge, never attempted. “Smart” implementations of the operators that
can work incrementally, to help address incremental changes in the development
artifacts, as well as implementations that are able to simultaneously consider
artifacts of several types, would also be highly useful.
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7 Summary and Conclusions

Numerous Software Product Line Engineering (SPLE) approaches promise to
ease the product line development and maintenance effort, reduce costs and
improve quality of the developed products. Yet, the adoption of such approaches
in industry is still limited. Instead, products are often established ad-hoc, e.g.,
by copying existing variants and modifying them to fit the requirements of a new
customer or market. In this paper, we focused on exploring causes for this lack of
adoption and suggesting approaches for improving the development experience
in organizations that employ cloning to realize their product lines. We invite the
readers to join our effort of helping industrial practitioners to deal with existing
cloned variants by investigating approaches for an automated transition from
ad-hoc to well-managed SPL development practices. In particular, we believe
that building an efficient management infrastructure on top of existing clones
(the clone-based SPLE approach) is a productive future research direction.
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Abstract. Robotic systems blend hardware and software in a holistic
way that intrinsically raises many crosscutting concerns such as concur-
rency, uncertainty, and time constraints. These concerns make program-
ming robotic systems challenging as expertise from multiple domains
needs to be integrated conceptually and technically. Programming lan-
guages play a central role in providing a higher level of abstraction. This
briefing presents a case study on the evolution of domain-specific lan-
guages based on modular robotics. The case study on the evolution of
domain-specific languages is based on a series of DSL prototypes devel-
oped over five years for the domain of modular, self-reconfigurable robots.

1 Introduction

Model-driven and domain specific development methods are recognized approac-
hes for coping with the challenges of building complex heterogeneous systems
in domains such as aerospace, telecommunication and automotive [12]. Robotic
systems face similar challenges, due to the need for blending hardware and soft-
ware in a holistic way intrinsically raising many crosscutting concerns such as
concurrency, uncertainty, and time constraints [16]. By experience, traditional
general-purpose languages often lead to a poor fit between the language features
and the implementation requirements.

Domain-specific languages (DSLs) and models offer a powerful, systematic
way to overcome the challenges of developing software for robotics. A domain-
specific language (DSL) is a programming language dedicated to a particular
problem domain that offers specific notations and abstractions, which, at the
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same time, decrease the coding complexity and increase programmer productiv-
ity within that domain. Models offer a high-level way for domain users to specify
the functionality of their system at the right level of abstraction.

This briefing concerns a case study on the evolution of domain-specific lan-
guages based on modular robotics. Modular, self-reconfigurable robots are dis-
tributed robotic systems that can change their own shape by autonomously
rearranging the physical modules from which they are built [48]. Key issues in
programming modular robotics are illustrated using a programming exercise,
which is used to motivate a set of requirements for domain-specific languages
for this area of robotics. The case study is based on a series of DSL proto-
types for the domain of modular, self-reconfigurable robots developed over five
years [4–6,36–39]. In the case study we are interested in how to program distrib-
uted behaviors that implement specific robot functionality such as locomotion
or self-reconfiguration.

The rest of this document is organized as follows. First Sect. 2 introduces the
concept of domain-specific languages with a particular focus on concerns relevant
to robotics. Then Sect. 3 provides an overview of the use of DSLs in the robotics
domain. Sections 4, 5 and 6 present the case study on language evolution for
modular robots. Last, Sect. 7 concludes the paper.

2 Background: Domain-Specific Languages

Surveys with a wide scope on DSLs have been conducted both by Van Deursen
et al. [12] and later by Mernik et al. [27]. According to van Deursen et al. [12], a
DSL is defined as a “programming language or executable specification language
that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain”. The abstrac-
tions and notations must be “natural/suitable for the stakeholders who specify
that particular concern” [46]. These definitions highlight two fundamental char-
acteristics of well-designed DSLs: their expressive power is concentrated around a
specific domain and their syntax is intuitively understandable for domain experts
while being machine processable.

Model-driven software development with DSLs aims to extract agreed-upon
syntax and semantics from the problem domain, e.g., by reviewing existing code
examples and APIs, through the analysis of formal descriptions found in the lit-
erature or the application of further analysis patterns [27]. Based on the results
of these domain analysis steps, the identified abstractions and desired notations
can be realized as a DSL. Instead of hiding the domain concepts in a compilation
unit implemented with traditional programming techniques, the DSL approach
provides the specific abstractions at the model level. In contrast to General Pur-
pose Languages (GPL) such as C++, Java, or Python, DSLs usually contain
only a restricted set of notations and abstractions. Compared to external DSLs
that define their own syntax and semantics, so-called internal DSLs are embed-
ded in extensible general purpose languages such as Lua, Racket or Ruby [14].
They extend the syntax and potentially the semantics of the host language with
domain-specific notations and abstractions. This adds the expressive power of
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the DSL to the GPL. While internal DSLs typically rely on (and are bound to)
the execution semantics of their host language, external DSLs are transformed
to a format that directly allows execution on a target platform or interpretation,
e.g., through a virtual machine.

Similar to DSLs, Domain-specific Modeling Languages (DSML) are languages
that are focused on expressing model instances, often using a graphical notation.
DSMLs should however be considered different from general-purpose modeling
languages such as UML or SysML: While it is still possible to add domain-specific
abstractions to these languages, e.g., using UML Profiles (cf. MARTE [15] to
describe and analyze real-time systems), adding domain-specific notation to
graphical modeling languages is much harder.

In order to efficiently implement and apply a DSL approach for the develop-
ment of robotics systems and to fully exploit its benefits, DS(M)Ls are typically
realized in toolchains tailored to model-driven development such as the Eclipse
Modeling Project [18]. These so-called language workbenches such as xtext [13],
spoofax [22] and MPS [20] offer extensive support for the development of the DSLs
themselves and for the actual system modeling tasks performed by a language
user. DSLs developed in these environments facilitate the users modeling tasks
typically with textual and/or graphical editors with rich code completion and
dynamic constraint checking. Furthermore, these environments provide exten-
sion points to plug-in required model-to-model (M2M) and model-to-text (M2T)
transformations in order to generate code from system models that integrates with
the overall environment used for the development of a robotics application.

3 Programming Languages in Robotics

Surveys on programming approaches for robots in general have been conducted
by Biggs et al. [3] and later with a specific focus on DSLs by Nordmann et al. [29].
Following Biggs et al. [3] robot programming systems can be divided into three
categories: automatic programming, manual programming, and software archi-
tectures. In the context of this briefing, we are only interested in the man-
ual programming category, and will furthermore focus exclusively on DSLs. To
exemplify the challenges in programming distributed robot systems the area of
swarm robots will furthermore be introduced and used to motivate requirements
for DSLs for domain of modular robotics.

3.1 The Use of DSLs in Robotics

According to Nordmann et al., the main use-case for DS(M)Ls in robotics is to
generate executable code at design time to control the robot or provide sup-
porting routines [29]. They observe that the majority of published DSLs concern
Architectures and Programming, which refers to the way a robotic system is
designed on the software level, abstracting over the underlying computational
concepts. Platform-independence is often a motivation for the development and
use of DS(M)L approaches, but this is not always the case, for example to provide
tool support for a specific platform.
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Fig. 1. Examples of several tasks performed by robots built from ATRON modules
[21,26]

3.2 Challenges in Programming Modular Robots

Modular robotics is an approach to the design, construction and operation of
robotic devices aiming to achieve flexibility and reliability by using a reconfig-
urable assembly of simple subsystems [48]. Robots built from modular compo-
nents can potentially overcome the limitations of traditional fixed-morphology
systems because they are able to rearrange modules automatically on a need
basis, a process known as self-reconfiguration, and are able to replace unservice-
able modules without disrupting the system’s operations significantly. The same
set of modules can be used for many different purposes, as illustrated in Fig. 1
with the ATRON robot.

Naturally, since modular robots in principle can be used to build any kind of
robot, many traditional concerns in robotics are relevant for modular robots.
Nevertheless, some concerns are particularly important for modular robots:
representations of the robot structure and specifications of coordinate repre-
sentations and transformations must model a reconfigurable structure and the
mappings between the individual modules, and are thereby key to many of the
other subdomains (e.g., the control of the modules depends on their position in
the structure). For self-reconfigurable robots the sequence of operations needed
to modify the module configuration can be derived using reasoning and plan-
ning [9,28,34,45,49,52].

Control of a modular robot as a whole requires coordination of all of the
modules of the robotic ensemble. For example when programming locomotion
gaits for chain-type modular robots, functional configurations within the robot
ensemble can be identified and assigned controllers specified as phase automata,
so as to achieve the desired group behavior [53]. In general coordination in a
modular robot requires some degree of abstraction over distribution. An extreme
example is ensembles composed of spherical microrobots [17] assumed to exist in
massive numbers several order of magnitudes higher than macroscale modular
robots. Such microscale robots could be programmed using declarative high-
level programming languages specifically developed to support the operation of
such million-module ensembles by abstracting over the individual modules and
specifying behaviors for the ensemble as a whole [1,11]. In this case the language
can afford to overlook specific reliability issues, since failure of individual modules
is often not significant in a highly-redundant context.
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Fig. 2. Python-based simulation of robot swarm, information from red robot picked
up by blue robots that have transitioned to yellow and are carrying the information to
the green robot. (Color figure online)

3.3 Concrete Example: Swarm Robots

Swarm robots are a special kind of mobile robots where many smaller robots
cooperate to achieve goals beyond the capability of any of the robots operating
by itself [35]. Swarm robots are similar to modular robots, in the sense that
many (smaller) robots collaborate towards a common goal. Similar solutions can
to some extent be used across both these kinds of robots, modular robots are
however normally physically interlocked, which requires a much higher degree of
coordination compared to swarm robots. Nevertheless the challenges in program-
ming modular robots can to some extent be understood by studying examples
of swarm robot programming.

We use swarm robots as a concrete example to address the issue of reliable dis-
tributed programming on unreliable robot hardware by means of a programming
exercise used at GTTSE’15. The problem posed and the corresponding solution
serves to motivate the case study on DSLs for modular robots presented later
in this briefing. We only address the challenges in programming swarm robotics
briefly, for a general overview we refer to the SWARM-BOTS overview [35].

Context. The swarm-bots programming exercise is based on a minimal sim-
ulation implemented in Python using the on-line CodeSkulptor programming
environment. The sourcecode is available online [24]. The simulator provides
a rectangular two-dimensional arena environment in which a number of round
robots can move around. Each robot is controlled by a Python function, and can
move around in the arena, but stops if it hits the edges of the arena or bumps
into other robots. Robots can sense other nearby robots and communicate with
them. The simulator provides a number of parameters for tuning the behavior,
including adding random noise to movement and simulating an unstable power
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supply that when the robot moves randomly resets the state of a robot to its
initial state. A screenshot from the simulator is shown in Fig. 2. The simulation
is programmed with a classical swarm robots scenario: reliably communicating
information from one part of the system to another, using only ad-hoc commu-
nication between neighboring robots. The simulation uses colors to indicate the
state of the robot controller: the immobile red robot represents an information
source and the immobile green robot an information sink (i.e., the location that
the information must be carried to). The blue robots move around looking for
information, and transition to yellow when they are carrying the information.

Programming exercise. The information communication scenario formed the
basis for an exercise, which was conducted as a student programming compe-
tition at GTTSE’15. The simulation as provided to the students came with a
controller implementation that solved the problem within the time limit in a reli-
able environment scenario (precise robot movement, no risk of reset). The initial
implementation could easily be improved with the given simulation parameters,
for example by precisely moving the robots in a pattern that maximizes coverage
or that forms a straight line between the information source and sink. The prob-
lem to solve was however expressed as Devise [a] robot controller that exhibits
the highest degree of robustness to “spurious resets” and still solves the problem
[within the time limit]. When the movement randomization and reset risk are
increased, the controller implementation that was provided completely fails to
solve the problem. The movement randomization makes it difficult to position
robots precisely, just as it would be the case in a real-world physical scenario.
The reset risk is exaggerated compared to the capabilities of most real-world
robots, but a solution that works in spite of many of the robots spontaneously
resetting is by experience robust and likely to work in the presence of unreliable
hardware [38].

Elements of a solution. A number of solutions were provided by different groups
of GTTSE’15 participants, in general the recurring idea was to focus on reactive
behaviors where the robot constantly adjusts its current movement pattern to
the state of the immediately surrounding environment. The winning solution was
programmed by Patrick Monslaup (University of Bergen), and is shown running
in the simulator in Fig. 3. The solution does not rely on mobile robots being able
to retain any state, but eventually builds a network of immobile robots along
the edge of the arena that are within communication range of each other. The
solution moreover relies on the random noise in the movement to avoid deadlock
situations where robots might otherwise get stuck, due to a very simply searching
behavior where the mobile robots move along the sides of the arena and stop
when they find an unoccupied spot.

3.4 Key Requirements on DSLs for Modular Robotics

The main concerns in programming modular robots are Adapting behavior to
physical shape, shape-independent Control and Communication. Adaptation is
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Fig. 3. Solution to the Python-based simulation problem from Fig. 2, highly tolerant
to random resets and noise.

required since, unlike most other kinds of robots, a control program running on
a modular robot must adapt to the current physical shape of the robot. This
holds true even as a self-reconfigurable robot changes its shape, as this requires
a continuous adaptation of the controller to the robot shape. Control programs
will therefore often tend to make assumptions about the shape of the robot, but
critically these assumptions should only concern selected properties of the robot
(such as whether the robot has wheels), ideally allowing the program to abstract
over uninteresting morphological details (such as the underlying symmetry of
the wheel modules). Control of a modular robot should allow the robot to be
controlled as a whole. Since centralized approaches do not scale well and are
fragile in the context of unreliable hardware, this typically requires distributed
and fault-tolerant control which in general is considered difficult to program
manually. Communication is required given the distributed nature of modular
robotics, but unreliable hardware complicates the implementation of reliable
approaches to communication. Moreover scalability to larger numbers of modules
is normally considered essential, which requires (most) communication to be local
even when global coordination is needed.

4 Case Study: Modular Robots

We now present the basis for our case study in the development of DSLs for
robotics: a DSL designed for programming the ATRON modular robot for
locomotion tasks [6]. As described in the previous section, modular robot pro-
gramming spans a number of issues ranging from algorithms for high-level coor-
dination to dealing with programming distributed hardware modules, issues that
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Fig. 4. The ATRON modular robot: a single module together with snake and car
configurations

Fig. 5. Left: Small ATRON car. Rest: Various simulated ATRON car configurations:
basic 4-wheels, long 6-wheels, and parallel 12-wheels.

must be dealt with at multiple levels in the software environments that we
develop for this domain.1

4.1 Analysis: Hardware and Software

Our experimental platform is the ATRON self-reconfigurable robot, a 3D lattice-
type robot [21,26] shown in Fig. 4. An ATRON module is spherical, is composed
of two hemispheres, and can actively rotate the two hemispheres relative to each
other. Each module is equipped with an Atmel 128 CPU with 4 Kb of RAM
and 128 Kb of program memory. A module may connect to neighbor modules
using its four actuated male and four passive female connectors. The connectors
are positioned at 90◦ intervals on each hemisphere. Eight infrared ports, one
below each connector, are used by the modules to communicate with neighboring
modules and sense distance to nearby obstacles or modules. A module weighs
0.850 kg and has a diameter of 110 mm. Currently 100 hardware prototypes of
the ATRON modules exist. Motion constraints on the modules affect their ability
to self-reconfigure. The single rotational degree of freedom of a module makes

1 This section is partially based on the paper A Virtual Machine-based Approach
for Fast and Flexible Reprogramming of Modular Robots published at the IEEE
International Conference on Robotics and Automation [6].
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its ability to move very limited: in fact a module is unable to move by itself. The
help of another module is always needed to achieve movement. All modules must
also always stay connected to prevent modules from being disconnected from the
robot. They must avoid collisions and respect their limited actuator strength:
one module can lift two others against gravity. As a concrete example, consider
the car robots shown in Figs. 4 and 5, which are different configurations for car-
like robots, physical and simulated. These robots have a number of “wheels”:
modules that are in contact with the floor, that can turn freely, and that are
aligned in the same direction. The two-wheeled car uses differential steering,
whereas the others use one of the modules as a steering column.

General approaches to programming the self-reconfigurable ATRON robot
include gradients, metamodules, and rule-based control [8,10,30,31]. In the con-
text of this briefing, we will investigate the use of role-based control, which
is a generalization of rule-based control. Role-based control is an approach to
behavior-based control for modular robots where the behavior of a module is
derived from its context [41,42]. The behavior of the robot at any given time is
driven by a combination of sensor inputs and internally generated events. Roles
allow modules to interpret sensors and events in a specific way, thus differenti-
ating the behavior of the module according to the concrete needs of the robot.
Roles have been demonstrated as a highly useful abstraction when program-
ming locomotion for modular robots, for which reason we will investigate the
development of a role-based language.

4.2 The DynaRole Language

Following the approach of role-based control [42], we propose the DynaRole DSL
inspired by concepts role-oriented programming: we assign a behavioral role to
each module depending on the properties of the module, including its physical
position, current behavior, and connectivity to other modules [41]. The role
assignment aspect of DynaRole is purely declarative, allowing roles to be assigned
to specific modules in the structure based on invariants. DynaRole is a domain-
specific language targeted to the ATRON robots with very limited support for
general-purpose computation; it provides primitives for simple decision-making,
but all complex computations must be performed in external code.

Figure 6 shows the EBNF of the DynaRole language (non-terminals are writ-
ten using italicized capitals, concrete syntax in courier font). A DynaRole pro-
gram declares a number of roles. A role normally extends a super-role meaning
that it inherits all the members of the super-role; the common super-role Module

defines the capabilities of all modules. A role can be concrete or abstract, with
the usual semantics: all abstract members must be overridden by concrete mem-
bers for a role be usable at runtime. A role declares a number of members in
the form of constants, invariants, and methods. There currently is no explicit
notion of state, so state is represented using external C code and accessed using
functions. A constant can be concrete or abstract, and always defines an 8-bit
value. For a module to play a given role, all invariants required by the role must
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Fig. 6. EBNF for DynaRole. For simplicity, commas between function arguments are
omitted in the EBNF.

be true (in case of conflicts between roles, the choice of role is undefined). An
invariant is simply a boolean expression over constants and functions.

Methods are used to define the behavior that is active when a module plays
a given role or any of the super-roles. A method is simply a sequence of state-
ments that either are function invocations or conditionals. For simplicity meth-
ods currently always take one argument. Function invocations are either local
commands, functions, or global commands. Local commands access the physical
state of the module (sensors, actuators, external code) and are prefixed with the
term “self.” to indicate that it is a local operation. Functions are basically used
to represent stateless operations such as computing the size of (i.e., number of
bits in) a bit set. Global commands are of the form “Role.command” and cause
the command to be asynchronously invoked on all modules currently playing
that role or any of its sub-roles. Arguments to functions are expressions, either
constants, compound expressions, or code blocks; a code block allows code to be
stored for later use (e.g., an event handler). Note that since the code is stateless
no closure representation is required. The function invocation syntax for prim-
itive functionality from the role Module (such as turning the main actuator) is
the same as that of user-defined functions. A method declaration can be prefixed
by a modifier, as follows. The method modifier “abstract” works in the usual
way (forces the enclosing role to be declared abstract). The method modifier
“behavior” causes the method to execute repeatedly so long as the role is active,
whereas the method modifier “startup” causes the method to execute once when
the role is activated. Last, the method modifier “command” causes the method to
become exported for invocation as a global command.

The datatypes manipulated by DynaRole programs are all represented using
single bytes, as follows: signed and unsigned 8-bit integers; sets of connectors
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represented as bit sets, which conveniently can be done using a single byte since
there are only 8 connectors; and role identifiers corresponding to the runtime
representation of a type. The single-byte limitation is naturally a severe limita-
tion, but in practice many scenarios can nonetheless be programmed using these
datatypes.

4.3 Deployment and Execution

We propose a deployment and execution model based on mobile code executing
on a virtual machine designed around the DynaRole core concepts: the context
of a module and its role in the ensemble, the reactive nature of robot controllers,
and control programs decomposable into subparts that can be dynamically and
separately redefined. By incorporating those concepts into the design we are able
to achieve conciseness of compiled programs (thus providing fast and efficient
code distribution) while retaining expressiveness. Compiling DynaRole to the
virtual machine is fairly a straightforward process, since most concepts in the
language are supported directly by the virtual machine. The role hierarchy is
however not represented as a runtime model, but is rather used to generate code
that can access the current role from the virtual machine.

We note that the issue of updating the software in the modules of a robot has
received little attention from the research community, though in our experience
it is one of the main factors hindering agile development and experimentation
with physical robots: reprogramming tens or hundreds of modules can be a
major overhead in the development process and cannot be done with traditional
approaches without restarting the robot, which impedes updating a running
system.

Our developed virtual machine enables efficient distribution of small byte-
code programs throughout a structure of ATRON modules and supports dynamic
live update of running programs within each module. Its design is centered on
a concept we refer to as distributed control diffusion: controller code is selec-
tively deployed to those modules where a specific behavior is needed to fulfill
a given role, so as to efficiently use the constrained network resources. The
virtual machine, named DCD-VM, has a domain-specific instruction set that
is dedicated to the ATRON hardware and includes operations that are typi-
cally required in ATRON controllers. For example, it maintains an awareness of
the compass direction of each module and the roles of its neighbors, and spe-
cific instructions allow this information to be queried. Moreover, it provides a
lightweight and scalable broadcast protocol for distributing code throughout a
structure of ATRON modules, making the task of programming controllers that
adapt to their immediate surroundings significantly easier.

4.4 Example: Obstacle Avoidance

As an example, we use DynaRole to implement locomotion and obstacle avoid-
ance for the mini 3-module car of Fig. 5. The program is shown in Fig. 7. The
Head role (line 2) requires the central axis of the module to be “north-south”
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Fig. 7. Obstacle avoidance for the mini car of Fig. 5
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(the direction the robot is facing, line 3), whereas the wheels require the cen-
tral axis to be “east-west” (line 19). The left and right wheels are distinguished
by requiring the number of connections to be equals to one to the “west” and
“east” sides respectively (lines 35 and 41). The method on the head sets up an
event handler that invokes the method evade on wheel modules (lines 4–11); this
method causes the car to back up for a short while before continuing forwards.
The code compiles to 8 program fragments comprising 148 bytes of code in total
(not all of which needs to be distributed to all modules).

4.5 Assessment

The DCD-VM and the DynaRole language demonstrated the possibility of
using virtual machines and high-level domain-specific languages on a resource-
constrained robotic platforms such as the ATRON. Practical experiments how-
ever demonstrated that the reliability of the underlying hardware was an issue.
The modules would sometimes lock up requiring a hard reset to continue, but
resetting looses the state of the individual module, often requiring the entire
distributed program to be restarted. Even worse, communication via infrared
was shown to be unreliable for some combinations of modules, in some extreme
cases only one-way communication was physically possible between some pairs
of modules. In terms of expressiveness, DynaRole could express an obstacle eva-
sion behavior in terms of roles, but the behavior of the robot as a whole becomes
an emergent behavior that arises from the collaboration of the individual roles,
making programs both hard to write and difficult to understand. Last, the key
feature of a robot like the ATRON is the ability to self-reconfigure, something
which is not easily programmed in DynaRole.

5 Evolution: Distributed Sequences

Experimentation with the DynaRole language revealed that it was insufficient
for programming key operations such as self-reconfiguration, and moreover did
not help to abstract over critical issues such as distribution and unreliability in
a useful way. To address these problems, the language and runtime model were
evolved to better support robust execution of distributed sequences of opera-
tions [38], as described in this section.2

5.1 Analysis: Self-reconfiguration

Robots built from modular components can potentially overcome the limita-
tions of traditional fixed morphology systems because they are able to rearrange
modules automatically on a need basis, a process known as self-reconfiguration,
and are able to replace unserviceable modules without disrupting the sys-
tem’s operations significantly. The generation of a centralized representation
2 This section is partially based on the paper Robust and reversible execution of self-
reconfiguration sequences published in Robotica [38].
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of a self-reconfiguration sequence has been the focus of many papers in robot-
ics [7,9,23,32–34,44,45,47,51,52]. From the point of view of programming, we
are interested in the transformation of such a representation into a distributed
controller. This transformation is in principle easy to do, but in practice many
difficulties arise: real-world modules may have partial failures in their neighbor-
to-neighbor communication abilities and may spuriously fail during the self-
reconfiguration sequence. In essence, our goal must be to enable a programmer
to easily describe a specific self-reconfiguration sequence and have it reliably
executed by unreliable hardware.

This section presents an extension to DynaRole (as described in the pre-
vious section) that can execute self-reconfiguration sequences on the ATRON
modular robot distributedly. This extension, in this briefing referred to as
DynaRole++, provides a number of significant improvements. First, self-
reconfiguration sequences are compiled to a robust and efficient implementa-
tion based on a distributed state machine. Second, dependencies between oper-
ations are explicitly stated to allow independent operations to be performed in
parallel while enforcing sequential ordering between actions that are physically
dependent on each other. Third, the language is reversible meaning that for any
self-reconfiguration sequence the reverse one is automatically generated. Any
self-reconfiguration process described in the language is reversible, subject to
physical constraints.

5.2 Distributed Execution

We implement robust self-reconfiguration using a distributed state machine
where each module contains a complete implementation of the state machine
but only executes those states that are associated with the address of the mod-
ule. The address is simply an integer that for example can be assigned using
the preprogrammed internal address of the module or more generally can be
assigned based on a number of predicates like we do in this work. The state
machine transfers control between modules by globally sharing the active state
and the address of the module that should execute the state; the state sharing
is done between neighboring modules using a robust communication protocol
based on continuous diffusion of state between neighboring modules, described
later.

Parallel operations and global synchronization. Given a protocol for globally
sharing the state, a distributed state machine that uses a single state can trivially
be used to implement a sequential self-reconfiguration process. To implement
parallel operations we use the concept of a pending state which is a state that is
still actively executing an operation while the global active state advances. The
set of pending states is globally shared and maintained, so that when a module
starts or completes a pending state this information is propagated to the other
modules of the robot. Thus, to implement a sequential operation that executes
after all parallel operations have completed, a given state can wait for the set
of pending operations to be empty. Our approach does not generally support
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dependencies between independently executing sequences of actions, e.g. execute
S1;S2 sequentially but in parallel with S3;S4 that also execute sequentially. In
practice this restriction is not a problem for the self-reconfiguration scenarios we
are studying as they involve a fairly small number of physical modules, but for
larger-scale scenarios involving tens of modules or more, the lack of nesting would
seriously limit scalability. We address this issue using a notion of distributed
scope, as explained in Sect. 6.

5.3 Communication Protocol

Global sharing of state is central to the robustness properties of our approach
to self-reconfiguration. First, global sharing of state circumvents partial commu-
nication failure, since if there is a communication path between two modules
information will eventually propagate between the two modules. Second, global
sharing of state helps to tolerate reset of individual modules since the state of
the individual module can be restored from the neighbors; a more detailed analy-
sis of tolerating module reset can be found below. All communication between
modules is performed using idempotent messages, meaning that they can sim-
ply be transmitted repeatedly throughout the self-reconfiguration process, which
increases tolerance towards unstable communication where only a small percent-
age of messages get through. We refer to this approach as state diffusion, since
any local state advancement is eventually propagated throughout the structure
until it reaches an equilibrium (all modules having the same state). In addi-
tion to robustness, the protocol is oblivious to network topology, asynchronous,
and scalable3: The protocol is oblivious to network topology in the sense that
state will be propagated so long as there at some point in time is at least a
one-way connection between the parts of the robot. The protocol is asynchro-
nous since advancements to the global state and pending states can propagate
independently throughout the structure while operation are being performed.
The protocol is scalable since the number of packets sent per second per active
connector is constant, the specific number of packets can even be tuned to the
physical constraints of the system which enables developers to balance fast state
propagation and computational load due to communication.

Our communication protocol is designed to share the active state, the address
of the active module, and the set of pending states using idempotent messages.
The set of pending states grows and shrinks as pending operations are added and
completed. Each module continuously diffuses (i.e., locally broadcasts) packets
that contain the local copy of the global state and is responsible for merging
copies of the global state received over the network. Updates are always made to
the local copy: after completing an operation a module can update the local copy
of the active state and active module address (according to the state machine
transition) and update the local set of pending states by adding or removing
elements. An update is propagated throughout the module structure by the

3 These properties are due to Shen et al. [40], in addition we note directed diffusion
in sensor networks as a source of inspiration [19] for the diffusion concept.
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Fig. 8. Global state merge function. Let Gi = (si, ai, Pi) denote a copy of the global
state where si is the currently active state, ai is the address of the active module,
and Pi is the set of pending states. Let G0 be the local copy of the global state on a
module, G1 be the incoming global state being received over the network, and G2 be
the resulting global state which will be propagated to all neighbors of the module.

continuous transmission of local state to neighboring modules that in turn merge
their local state with the incoming updated state. The merge function is shown
in Fig. 8. The two key properties that we exploit are (1) that a pending state
p0 added to an active module M0 in active state s0 is always added before the
active state is propagated to some other module M1, and (2) the active state s1
propagated to the other module M1 is greater than p0. This implies that when
merging “older” incoming global states which have a lower active state, removal
of pending states should only be taken into account for those pending states that
the incoming global state could have known about, that is, those pending states
that are lower than the active state of the incoming global state. The inverse
relation holds for merging “newer” incoming global states which have a higher
active state. A key property of this merge function is that removal of pending
states can propagate along the same path as the active state is being transferred,
improving tolerance towards partial failure of communication in comparison to,
for example, an algorithm based on first reaching consensus over the global active
state. Such an algorithm would require the newer state to be propagated back
for the resolved pending states to be appended and then taken into account.

5.4 Module Reset

Numerous kinds of hardware and software faults can occur during a self-recon-
figuration sequence; we are concerned with a specific fault, namely spurious reset
of a module either due to hardware faults or induced by e.g. a watchdog timer
firing because of a software error. Using our shared state approach, a module
that is not currently performing an operation can trivially tolerate a reset in the
middle of a self-reconfiguration sequence. The state will be restored from the
neighbors, and if the module was to perform the next action the global state
will simply not be advanced until the module is ready and starts to execute this
state. A more critical case is reset of a module that is in the middle of performing
an operation. Such a module can in many cases be reset, but only when all API
operations are idempotent, which is the case for e.g. ATRON. Specifically, we use
idempotent operations such as “extend connector” or “rotate to position 324”
and such operations will under normal circumstances simply complete when
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power is restored and the global state is propagated to the module. Reset of
a module that is performing a pending operation requires special support: the
state of the module will after restarting be reset to the global state which is
higher than the pending state. Each module locally keeps track of the pending
states that it has started; this information will be erased after a reset which can
be used to reenter the pending state when required. By combining the local set
of pending states that have been started with the information of what states
are globally pending and what pending states a given module is responsible
for completing, a module can detect the situation where it is responsible for
a pending state but has not removed it from the global state because it was
stopped in the middle of the operation. Simply reentering the pending state will
normally cause the pending operation to complete and hence provide the desired
robustness.

5.5 Language Design

We have designed and implemented DynaRole++, a DSL that extends the Dyna-
Role language as described in the previous section. In the DynaRole language,
roles are used to encapsulate sets of behaviors that should be activated on spe-
cific modules in a structure. The assignment of roles is declarative and is used
as a basis for dynamically updating behaviors in a running system using a vir-
tual machine approach. Self-reconfiguration however concerns multiple tightly
coordinated modules performing a number of operations, which is difficult to
encapsulate using the concept of a role. As an alternative, in DynaRole++ we
have implemented a new construct, the sequence which is a number of operations
that are executed across a number of modules. The concept of a role is still used
to identify which modules perform what operation.

As a concrete example, consider the sequence shown in Fig. 9 which describes
the complete “8 to car” self-reconfiguration process. Each statement is prefixed
with a label indicating what module is executing the statement, e.g. M0 is used to
indicate a specific module in line 6. Following the label is a call to the ATRON
API, for example controlling the connectors or the main joint; see Table 1 for
details. Note that the rotation call has been augmented with an extra argument
to facilitate reversing the program, as described later.

Table 1. The DynaRole++ ATRON API, selected operations
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Fig. 9. DynaRole++ sequence describing the “8 to car” self-reconfiguration sequence

Each statement is terminated either with a semicolon “;” meaning sequential
execution (the next statement is dependent on this operation) or an ampersand
“&” meaning parallel execution (the next statement is independent of this oper-
ation), similarly to e.g. UrbiScript [2]. A sequence of parallel statements are
considered independent, that is, physically unconstrained, and may be executed
in any order but must all be completed before the next sequential execution
point. As an example, consider the first lines of the “8 to car” sequence, lines
6–9, which indicate that modules M0 and M3 can open their connectors in par-
allel whereas the rotation of modules M3 and M4 must be done sequentially and
must only take place after both connectors have opened. We note that nesting of
sequential statements inside parallel statements across multiple modules is not
currently supported (as described earlier this feature is not supported by the
current state machine design). The presented sequence completely implements
the rather complex “8 to car” self-reconfiguration process; the individual steps
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are unimportant from the point of view of language design, whereas the read-
ability and conciseness of the program as a whole is considered critical for the
usability of the language.

The labels that indicate what module should execute a given statement are
defined using roles, as outlined in lines 1–3, which as before are defined using
logical predicates on the local state and the context of each module. (The context
is defined as the state of the immediate neighbors.) Here we for simplicity only
use a local predicate on the internal ID of the module which is programmed
when flashing the module.

5.6 Reversibility

Given a distributed sequence written in DynaRole++ it is straightforward to
generate the reverse sequence: the ordering of statements must be reversed while
retaining dependence relations between statements, and each statement must in
itself be reversed. Reversal is thus a simple syntactic transformation, similarly to
(and inspired from) Janus [50]. Reversal of the ordering of the statements must
preserve the semantics that a sequential dependence between two statements
requires all parallel statements to have completed before the next sequential
statement can execute. This implies that the statements can be ordered in reverse
while retaining the same separator between each given pair of statements. For
example, a sequence of statements S1&S2;S3; reverses to S3;S2&S1;. Reversal of
an operation is straightforward due to the design of the API operations supported
in DynaRole++ sequences: retract becomes extend and vice versa, whereas
rotateFromToBy simply swaps the from and to angles and reverses direction.

The programmer explicitly defines and invokes reversed sequences, for exam-
ple the sequence shown in Fig. 9 is reversed using the following declaration:

sequence car2eight = reverse eight2car;

After this declaration the name car2eight can be used like any other sequence
name.

5.7 Assessment

The effectiveness of DynaRole++ has been demonstrated with relatively long-
running, reversible self-reconfiguration experiments using physical ATRON mod-
ules, comprehensive self-reconfiguration experiments using simulated ATRON
modules, and a reversible self-reconfiguration experiment using simulated M-
TRAN modules [52]. For details we refer to Schultz et al. [38]. Moreover,
the DynaRole++ language was the first robotic control language to support
reversible execution, a principle that we have recently applied to industrial robots
to improve robustness and to automatically transform programs that assemble
products into reverse programs that disassemble the same products [25].
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6 Work-in-Progress: Distributed Scope

The DynaRole++ languages provides massive advantages compared to the orig-
inal version of DynaRole. DynaRole++ is however very narrow in scope and is
most effective for describing self-reconfiguration sequences. To address this prob-
lem, the language and runtime model should be extended to provide a richer
model, ideally without compromising the robustness and reversibility features of
DynaRole++. This section describes initial ideas for such an extension, based
on a notion of distributed scope.4

6.1 Analysis: Generality and Scalability

The DynaRole++ language and runtime mechanisms for programming and
execution of distributed sequences presented in the previous section improves
robustness of the self-reconfiguration process by at least an order of magni-
tude [38]. The distributed execution aspect of DynaRole++ is however very
simple and does not provide control structures or even a means to manipulate
the program state. To enable robust execution to be used for more general sce-
narios, the language must be extended to provide such features, but without
compromising the robustness of the system.

Moreover, distributed execution assumes global sharing of state, which obvi-
ously does not scale to larger hundred- or million-module ensembles. As exem-
plified by the metamodule control strategy [10], in such scenarios smaller groups
of modules typically work together and would need to share state, but the state
would be private to these strongly coupled modules and not shared with the rest
of the ensemble.

6.2 Language Design

We propose the RoCE (Robust Collaborative Ensembles, pronounced “rose”)
language for robust, general-purpose control of modular robots. The language
has two primary abstractions: ensembles and roles. An ensemble is a dynamic,
distributed scope that covers a number of modules and introduces shared state
and proactive, distributed behaviors into these modules. A role applies to a sin-
gle module, and introduces local state and reactive behaviors into the module,
in the form of a statemachine. A module can be a member of any number of
ensembles at a given time. Ensembles and roles together are referred to as enti-
ties. Declarative rules are used to control the activation of entities based on
spatial constraints, the active entities of neighboring modules, local state from
roles, and shared state from ensembles. Entities can be specialized with a seman-
tics resembling standard object-oriented inheritance: members can be added and
existing members can be overridden.

4 This section is based on work presented in a preliminary form at workshops and as
a poster [36,37,39].
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Fig. 10. Obstacle evasion program in RoCE
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6.3 Example

One of the primary design goals of RoCE is to allow modular robots to be
controlled in a robust manner based on a global description of the behavior.
As an example, consider obstacle avoidance for the small 3-module ATRON
car from Fig. 5 implemented by the program shown in Fig. 10. The ensemble
Car (line 2) encapsulates the overall behavior of the robot, and consists of a
shared state variable obstacle (line 4) and a conditional behavior that executes
continuously (lines 6 and 7). Depending on the value of the shared state, the
behavior is to either drive forwards or perform an evasive behavior for 3 seconds.
Roles are assigned to modules that satisfy the require clauses (such clauses
can also be used to activate ensembles), and can similarly introduce states and
behaviors but only locally to the given module. The role Front (line 11) applies
to modules within the Car ensemble that have the required two connections
(uniquely identifying the front module, line 12). The role checks the front sensor
and updates the shared state obstacle correspondingly (lines 14 to 18, the shared
state is visible here due to the within declaration). The role Wheel (line 22) acts
differently depending on its connections (the left and right wheel must rotate
in opposite directions), and the state drive (line 32) expresses the actions to
take when driving forwards or evading (the wheel closest to the obstacle rotates
slower to turn away from the obstacle).

6.4 Assessment

The RoCE language as described here has only been implemented as a number
of preliminary prototypes that have been tested in simulation and in early pro-
totype on the physical ATRON modules [36,37,39]. These initial experiments
were promising in terms of testing the language concepts and their implementa-
tion. Compiling a program still produces a number of robust distributed state
machines that execute in parallel on the modules of the robot (an approach
which was experimentally demonstrated to work well in practice [38]). Each
state machine continuously diffuses state (describing shared variables and behav-
ior execution) to neighboring modules which are then responsible for merging
this state with their own; this approach decouples communication from execu-
tion and enables modules to automatically route around failing communication
paths and recover from spontaneous loss of state.

7 Conclusion

This briefing has presented three stages of an evolution of a DSL for modular
robots. The key requirements outlined earlier in Sect. 3.4 concerned adapting
to the physical shape, shape-independent robust control, and scalable commu-
nication and coordination. The first version of DynaRole (Sect. 4) relied on the
notion of roles to provide both shape adaptation through the declarative require
clauses and shape-independent control using role inheritance. The extended ver-
sion DynaRole++ (Sect. 5) added support for the central self-reconfiguration
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scenario and massively improved the robustness properties of the language. Last,
the RoCE work-in-progress language (Sect. 6) added the notion of a distributed
scope as a means to providing robust and scalable communication and coordi-
nation.

The case study DSLs have not been used extensively enough to pro-
vide comparative metrics, but we note that orders-of-magnitude improve-
ments have been demonstrated in terms of time required to reprogram
physical modules [6], the number of lines of code required to implement
a self-reconfiguration sequence [38], and the robustness of executing a self-
reconfiguration sequence [38].

In terms of future work, we are generally interested in exploring the use of
DSLs to address concerns in robotics. We refer to the recently published survey
on DSLs for an overview [29], noting that some key areas such as security and
safety for robots only have received limited attention in the research commu-
nity. Moreover, we observe that the community is largely driven by a focus on
robotic capabilities, leaving more exotic programming language features such as
reversible [25] and probabilistic programming [43] largely unexplored.
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In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30552-1 2

36. Schultz, U.P.: Towards a general-purpose, reversible language for controlling self-
reconfigurable robots. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol.
7581, pp. 97–111. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36315-3 8

37. Schultz, U.P.: Programming language abstractions for self-reconfigurable robots.
In: Proceedings of the 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity, SPLASH 2012, pp. 69–70. ACM, New York
(2012). http://doi.acm.org/10.1145/2384716.2384743

38. Schultz, U.P., Bordignon, M., Stoy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29, 35–57 (2011), accompanying video avail-
able at. http://www.youtube.com/watch?v=SYizuooEs7s

39. Schultz, U.: Towards a robust spatial computing language for modular robots. In:
Proceedings of the 2012 Workshop on Spatial Computing (AAMAS), Spain, June
2012

40. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication
and distributed control for conro self-reconfigurable robots. IEEE Trans. Robot.
Autom. 18, 700–712 (2002)

41. Stoy, K., Shen, W.M., Will, P.: Using Role Based Control to Produce Locomotion
in Chain-Type Self-Reconfigurable Robots. IEEE/ASME Trans. Mechatron. 7(4),
410–417 (2002). Special issue on Self-reconfigurable Robots

42. Støy, K., Shen, W.M., Will, P.: Implementing configuration dependent gaits in a
self-reconfigurable robot. In: Proceedings of the 2003 IEEE International Confer-
ence on Robotics and Automation (ICRA 2003), Tai-Pei, Taiwan, pp. 3828–3833,
September 2003

http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://dx.doi.org/10.1007/978-3-540-30552-1_2
http://dx.doi.org/10.1007/978-3-642-36315-3_8
http://doi.acm.org/10.1145/2384716.2384743
http://www.youtube.com/watch?v=SYizuooEs7s


www.manaraa.com

DSLs in Robotics: A Case Study in Programming Self-reconfigurable Robots 123

43. Thrun, S.: Towards programming tools for robots that integrate probabilistic com-
putation and learning. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). IEEE, San Francisco, CA (2000)
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Abstract. Developers are using more and more different channels and
tools to collaborate, and integrations between these tools are becoming
more prevalent. In turn, more data about developers’ interactions at
work will become available. These developments will likely make People
Analytics — using data to show and improve how people collaborate —
more accessible and in turn more important for software developers. Even
though developer collaboration has been the focus of several research
groups and studies, we believe these changes will qualitatively change
how some developers work. We provide an introduction to existing work
in this field and outline where it could be headed.

Keywords: People analytics · Developer analytics · Social network
analysis · Feedback · Collaboration · Computer-supported collaborative
work

1 Introduction

How people behave at work is becoming more and more measurable. For example,
some companies are exploring the use of sociometric badges [25] that track the
location and meta data about the interactions employees have during the day.
But even without such devices, knowledge workers use more and more services
that collect usage data about their activities.

Developers are an extreme case of this — the center of their work is their
computer on which they write code, create and close tickets, and initiate text-
based chats or calls that are all recorded in some way or another. Changes to a
source code repository are recorded in full, task management applications have
an API that makes changes available to API clients, and calendar systems track
whom people have appointments with and when.

These changes in software development practice are paralleled by academic
research: there are new insights into how developers collaborate, established
and new methods in social network analysis, ongoing research in visualizing
collaboration, recent attempts to measure developer affect, and research on giv-
ing (developers) feedback. We discuss these areas and how they are relevant to
changes in how software developers work in Sect. 2.
c© Springer International Publishing AG 2017
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While one option would be to discuss this development as an issue of increas-
ing potential surveillance, we consider it an opportunity to make work itself bet-
ter. The rise of distributed and remote work also means that developers need
better support to improve how they collaborate.

An analytics system could track unusual events in source code repositories,
project management tools, calendaring applications, or video conferencing. This
would help monitoring whether some team members are isolated or disengaged —
and thus might need assistance — or whether employees working on the same or
related artifacts are communicating enough. Contrarily, visualizing and provid-
ing feedback about the steady progress that a team of developers makes could
be introduced, e.g., as motivational support.

What is People Analytics? This opportunity to improve work is called People
Analytics by some. There are multiple, but fuzzy definitions of the term. Even
the book that helped coin the term, “People Analytics” by Waber [57], does not
provide a definition of what is actually meant.

We therefore provide a definition by relying on our interpretation of People
Analytics literature and a previous definition of generic analytics by Liberatore
et al. [28]:

Definition 1. People Analytics is the use of data, quantitative and qualitative
analysis methods, and domain knowledge to discover insights about how people
work together with the goal of improving collaboration.

As such, People Analytics shares some similarities with the Quantified Self
movement1 — but in this case, it is applied to groups of professionals instead of
private individuals.

Similar to the recently popularized areas of Big Data or Data Science, the
specific technical methods are not necessarily new. However, their deliberate
application within the context of the goal of improving how people work has,
as far as we know, not been embraced by the software engineering research
community. We believe that it could be a useful umbrella term to bring disparate
research groups closer together.

We distinguish People Analytics from code analytics and from the mining
software repositories lines of research. Instead of focusing on the artifacts that
people create and modify, we now concentrate on how they work together to
achieve their goals. The central element we are interested in is not the source
code file or the commit, but the developer.

Phases in People Analytics. Again leaning on previous work on general ana-
lytics [28] and Singer’s work [46], we divide the application of People Analytics
into six activities: goal setting, data collection, two parallel phases of analysis
and intervention, change, and reflection (cf. Fig. 1).

1 “individuals engaged in the self-tracking of any kind of biological, physical, behavioral,
or environmental information” [55].
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Fig. 1. The phases in People Analytics.

Goal Setting. In this first phase, those implementing a People Analytics project
define what the project’s subject of interest is, what it is supposed to discover
more about, and what it is supposed to change or improve.

Data Collection. Now, the data needed for achieving the goal is chosen. A col-
lection strategy is formulated and systems are being set up for cleaning, aggre-
gating, and otherwise manipulating the collected data.

Analysis and Intervention. While or after the data is being collected, the analyst
will either run one or multiple analyses of the data, deploy an intervention —
such as a feedback system based on the collected data (cf. Sect. 3) — or both.

Change. Depending on the project, an analysis could provide proof or hints for
required changes in how developers work together, or an intervention could pro-
voke these changes to occur without further actions. For example, an analysis could
show that all communication between two groups goes through a single developer,
posing a risky bottleneck. A pure analysis-based management intervention could
then consist of assigning individuals to similar bridging roles. An intervention in
our sense would give the affected developers automatic feedback about this bottle-
neck and potentially trigger them to reorganize around it themselves.

Reflection. Finally, those implementing the People Analytics project will want to
reflect on whether the project reached its stated goal, why it worked, or possibly
why it did not work. Often novelty in reconfigurations or feedback systems can
wear off, making them less effective over time. Therefore, whether the change
will last needs to be considered and perhaps a strategy to evolve the manual
or automatic intervention will need to be put in place. In this phase, further
data collection to gather insights about the successes and failures that occurred
in the project can be helpful in understanding the second-order effects of an
intervention — including, but not limited to qualitative post-mortem interviews
with the affected developers (cf., e.g., Sect. 3).

People Analytics has a lot of potential for improving how developers collab-
orate. At the same time, there are multiple challenges that need to be overcome
to be able to implement a successful People Analytics project. Mistrust, fear of
surveillance, or choosing metrics for feedback that make matters worse are only
a few examples from the problems that can arise.

Those implementing a People Analytics project need to be fluent in diverse
methods of data collection and analysis, but also need expertise in creating inter-
ventions by using insights from human-computer interaction as well as organi-
zational studies and management science.
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We contribute our views on these challenges, possible solutions, and promis-
ing paths to be taken that could help fulfill the promise of this emerging field.

This paper is structured as follows: after this introduction, we review exist-
ing literature that could help those trying to drive People Analytics in software
engineering forward. Section 3 presents a simple application of People Analyt-
ics in which we nudged student developers towards a certain behavior when
committing to a version control system. We then conclude the paper with an
outlook.

2 Background and Related Work

This section gives an overview of existing literature that we consider to be rel-
evant and interesting when applying People Analytics to software engineering.
It is not a complete list, but rather a collection of research that we believe
could be inspiring when conducting research on or implementing People Analyt-
ics projects in practice. At the same time, we use it to roughly define what our
view of People Analytics in software development entails.

We see five major areas that are especially relevant for People Analytics
research in software engineering: general insights on how developers collaborate,
social network analysis to discern interaction patterns and relationships between
developers, visualizing collaboration to support developer understanding, mea-
suring developer affect to enable adaptable development tools, and giving devel-
opers feedback to help them understand and act upon their own behaviors. We
now discuss each in turn.

In their discussion of groupware [13], Ellis, Gibbs, and Rein emphasized the
importance of communication, collaboration, and coordination for group-based
activities. Since a few decades, software development is usually performed in
groups that work together. We therefore start with a discussion of how developers
collaborate and what challenges they meet. We then turn to how communication,
collaboration, and coordination of developers can be measured. We close with
a brief discussion of how to use such metrics for giving developers and their
managers feedback.

2.1 Insights on Communication, Collaboration, and Coordination

To understand what the customs and challenges are in developer collaboration,
we discuss some relevant studies.

Organizational Factors: Lavallée and Robillard [26] report on a study in which
they observed a team of developers in a large organization. Over a period of ten
months, they attended weekly status meetings and noted interactions and the top-
ics that were discussed. The researchers condensed their observations into a list of
ten organizational factors that hurt the overall quality of the software produced in
the project under study. Several of them are related to communication between
developers themselves or between developers and business stakeholders — such
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as undue pressure from management delivered through informal channels, differ-
ences between the formal and the actual processes, or needing the right social cap-
ital to be able to get work done.

Pair Programming: Stapel et al. [50] study how student developers communi-
cate during pair programming: they find that many conversations between devel-
opers are about concrete code, but when considering conversation length they
spend the most time discussing software design. When considering how conver-
sations change over time, discussions about code becomes less and less — pos-
sibly because developers learn syntax and project-specific conventions. Plonka
et al. [38] found that pair programming as a method that influences developer
communication can help diffuse knowledge within teams and organizations.

Team Mood and Interaction Intensity: Schneider et al. [44] investigate the rela-
tionships between media, mood, and communication in teams of student devel-
opers. Amongst other findings, the authors report that excessive positive mood
around a project’s midpoint could actually be detrimental, as it would often
signal too much optimism that could easily derail the project in its later stages.
To this end, the authors recommend providing developers with technical mile-
stones such as objective quality gates to provide feedback to developers regu-
larly, improving their self-evaluation. They also find that having early indicators
for isolated team members or high variance in a developer’s participation can
be helpful tools for project managers. Since they find a relationship between
developer affect and project success, the authors recommend that the mood in
developer teams be regularly measured to serve as a heuristic to alert managers
about potentially problematic projects. At the same time, both data about mood
and interaction intensity between team members should be made available to the
developers themselves to make them aware of things that might be going wrong
in their project.

The Role of Social Software: In previous work, we and others have studied how
developers use signals in social media to collaborate [53]. These signals could,
e.g., be text and visuals that convey someone’s status in a community or their
experience with a particular technology. We found that these signals influence
how developers collaborate with others, how recruiters evaluate them, what and
from whom they learn, and even whether and how they test their open source
contributions.

Singer et al. [47] report on a qualitative study involving both developers with
active social media profiles and software development recruiters. The authors
find that public profiles, aggregated activity traces, as well as the detailed activ-
ity data and artifacts developer create are useful for both assessment between
developers and also the assessment of developers by external parties, such as
recruiters. Capiluppi et al. [8] argue that these activity signals could help
recruiters find suitable candidates even if these do not have a traditional degree,
helping non-traditional candidates start their career in software development.
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Pham et al. [37] conducted a qualitative study with users of GitHub, finding
that the affordances of the site — several of them reflecting information about
people and groups, not artifacts — are helpful in nudging inexperienced devel-
opers towards the expected behavior and norms of an open source project they
want to contribute to. In part, this was due to normative behavior — such as
what a good pull request should contain — being published and discussed in the
open.

Finally, Singer et al. [48] conducted a study on how and why software devel-
opers use the microblogging service Twitter. Two of the more prominent findings
were that (a) microblogging helps developers connect with one another and par-
ticipate in cultures they are geographically not a part of and (b) that access
to such a diverse network of other developers can provide developers with rich
opportunities for learning new technologies and practices.

Take-away: There has been quite some research on issues such as how devel-
opers work, why they behave the way they do, why they use the tools they use,
what challenges they really face, and how they currently cope with these chal-
lenges. We should use these studies to learn from and to better understand what
problems we should attempt to solve.

2.2 Methods: Social Network Analysis

Now that we have provided an impression of recent research in how developers col-
laborate, we turn to research that attempts to measure it. We begin with the fun-
damentals of social network analysis and then discuss its relevance to team work.

Fundamentals: A social network is a structure that is composed of actors and
the ties between them. Actors — the nodes — and ties — the edges between the
nodes — form a graph. Depending on the application, ties can be weighted or
unweighted, directed or undirected. The weight of an edge can, e.g., represent
the strength of a relationship or the number of interactions between two actors.
The social networks of development teams can, for example, be derived from
organizational data [33], commit histories [10,30], or email exchanges [2].

Parts of this graph can be considered their own sub-networks and can follow
distinct patterns. Some typical sub-networks to consider in analyses are, for
example, the singleton (an unconnected node), the dyad (a connection between
two nodes), or the triad (with all possible edges between three nodes). Another
important sub-network is the clique: a number of nodes where every node is
connected to every other node.

Network science has invented many different metrics and properties that can
be helpful when trying to understand how and why a social network functions:

– Connectedness: two nodes are connected if there is a path in the graph that
leads from one node to the other.

– Centrality: this describes a few different measures that determine how central
a node is in a graph. Examples are degree centrality (a node’s number of



www.manaraa.com

130 L. Singer et al.

edges) or betweenness centrality (measures the importance of a node to the
shortest paths through the graph).

– Density: the number of edges in a graph divided by the numbers of possible
edges in the graph. Intuitively, this measures how well connected a social
network is.

– Centralization: measures how evenly distributed centrality is across all the
nodes of a graph.

Discovering Roles: Such properties can be useful, e.g., in automatically finding
bridges — nodes that form the only connection between two separate groups —
or for discovering equivalent roles in a social network. Golbeck [16] provides an
accessible introduction to these and many more analyses.

For example, Burt [5] provides a note on discovering equivalent roles in a
social network by categorizing every actor by the triad types they have. Practi-
cally, this allows clustering of actors by the role they occupy in an organization.
Comparing the result of such an analysis with the officially assigned roles could
help uncover discrepancies — enabling organization to, e.g., become aware of
what its employees actually do or to bring official roles more in line what is
really happening.

Relationship Intensity: Weak ties [17] between people within different parts of an
organization can speed up projects by providing a project team with knowledge
not available within its own ranks [22]. However, this is only true if the needed
knowledge is simple enough — needing to transfer complex knowledge via weak
ties can slow projects down. Strong ties across organizational boundaries might
be preferable in this case, however these are usually not numerous enough to
ensure access to the relevant knowledge. The weight of an edge between actors
in a social network can also be important when measuring the decay [6] between
relationships that naturally happens over time. Organizations could use this
information to improve employee retention.

Nagappan et al. [33] calculated eight different organizational measures about
the Microsoft developers who worked on Windows Vista. Examples are number
of engineers having edited a binary, number of ex-engineers, the position of a
binary’s owner in the hierarchy, or the number of different organizations making
changes to a binary. They found that their measures were more reliable and
accurate at predicting failure-proneness than any of the code-based metrics they
compared them against.

Social Networks over Time: Apart from the relatively static metrics discussed so
far, social networks and the events happening to them can also be analyzed with
a temporal dimension added. Xuan et al. [58] use both data on communication
(exchanged messages) and collaboration (artifacts edited) over time to reveal the
structure of development teams and model individual and team productivity. In
this case, actors in the network can be either developers or edited artifacts.
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Composing Teams: Finally, Reagans et al. [39] show that for organizations, it
might be easier and more effective to compose teams based on employees’ social
networks instead of their demographics. There is no doubt that social networks
within organizations can have a significant impact on the organization’s produc-
tivity, speed, and success — and that being able to analyze these social networks
is a necessary step to improvement.

Take-away: By combining methods and insights from classic social network
analysis with organizational studies, we can gain valuable insights that neither
discipline would have discovered on its own.

2.3 Methods: Visualizing Collaboration

While an analysis may often require only data and an algorithm, visualizing data
can aid exploration — we therefore briefly discuss some approaches to visualizing
the collaboration between software developers.

Repository Evolution: Both Gource [9] and Code Swarm [34] produce high-level
video visualizations of a source repository’s history. Software evolution story
lines [35] attempt to show more detail than the aforementioned, but in conse-
quence do not scale as well to larger projects.

Visualizing Information Flows: Stapel et al. [51,52] present FLOW Mapping,
a visualization of both formal and informal information flows through diverse
communication channels. Their approach is both for planning and monitoring the
media and indirections through which developers communicate during a project.
It is meant to improve communication in distributed software projects. In an
evaluation within a distributed student project, the authors monitored meta
data about communication through channels such as instant messaging, audio
and video calls, as well as source code repositories. The project manager in the
evaluation reported that the technique helped plan and measure compliance with
a communications strategy, and also to become aware of the different developers’
locations and connections.

Related to the FLOW Mapping visualizations, Schneider and Liskin [43]
define the FLOW Distance to measure the degree of indirection in communi-
cation between developers. Their metrics takes into account indirections created
through other people, documents, and processes. The authors believe this to
provide an objective metrics to measure how remote developers might feel from
each other.

Meeting Profiles: Liskin et al. [29] measured meeting frequency and length in
a project with student developers. The authors visualize the meeting profiles of
different teams and assign them to different categories. By comparing meeting
profiles with the actual projects, they find that high project pressure seems to
correlate with more frequent meetings. The authors argue that such a visual-
ization could be a significant help for managers who want to assess the stress
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level in the projects they’re responsible for. Extreme meeting profiles or sud-
den changes in meeting intensity could be sufficient heuristics for evaluating a
project’s problems more closely. At the same time, the data to produce meeting
profiles can be measured easily.

Take-away: Visualizing activity in code repositories is an interesting field of
study. But crucial insights can be gained using simpler visualizations and instead
focusing more effort on figuring out how to measure things that have previously
been too hard to measure.

2.4 Methods: Measuring Developer Affect

Having discussed the measuring of interactions between developers, we now
turn to the individual — specifically, developers’ emotions, moods, or affects.
Graziotin et al. [19] provide a comprehensive overview of the involved psycho-
logical concepts and challenges in conducting experiments that measure affect.

Affect and Productivity: Previous research suggests this is an important topic.
Meyer et al. [31] report on a study about the perceptions developers have about
their own productivity. Their participants report that completing big tasks
results in feelings of happiness and satisfaction. Relatedly, Graziotin et al. [18]
found that the attractiveness of a task and perceiving to have the skills required
to complete it correlate with developers’ self-assessed productivity. Khan
et al. [24] found that developer mood affects debugging tasks. Finally, in a
study on the reasons for developer frustrations, Ford and Parnin found that
the majority of developers is able to recall recent experiences of severe frustra-
tion [14]. Being able to measure the affective state of a developer therefore seems
potentially valuable.

Measuring Emotions: Fritz et al. [15] provide a method based on biometric
measures to estimate task difficulty. The authors argue that this will enable them
to stop developers to let them reconsider the task when it seems too difficult.
Relatedly, Müller et al. [1] use biometric sensors to detect when a developer
is “stuck.” Shaw [45] provides a method to assess developer emotions purely
based on psychological questionnaires — which is likely more cost-effective, but
also similarly distracting and likely less reliable than biometric sensors. Cheaper
and less intrusive methods, such as the mouse- and keyboard-based approach
proposed by Khan et al. [23], could prove to be more applicable, even though
they seem to be much less reliable.

Guzman et al. [20] report on a sentiment analysis of commit messages from a
set of open source projects. The authors find that developers in more distributed
teams tend to write more positive messages, that commit messages in Java-based
projects tend be more negative, and that code committed on Mondays also comes
with more negative messages. However, Murgia et al. [32] show that emotions
expressed within software development are often more nuanced than expected,
and that an automatic analysis will likely not be precise enough.
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Summarizing the above, we note that it would be valuable to be able to assess
developers’ moods and emotions, but sufficiently reliable solutions are currently
costly, inconvenient, or both. Light-weight solutions do not yet seem to achieve
a suitable level of reliability.

Emotionally Adaptive Tools: However, assuming a light-weight, but reliable
method to measure developer affect would exist, interesting possibilities would
open up in supporting collaborative work. Dewan [12] proposes a collaboration
system that tailors messages, tasks, and notifications between colleagues to their
current level of frustration and interruptibility.

Take-away: Measuring developer affect is an interesting and challenging topic,
but we need to keep in mind that results so far have been mixed. Future improve-
ments in methods will likely bring new ethical challenges.

2.5 Feedback Interventions

The previous sections have described what data could be interesting to gather
and how it could be manipulated to make insights more obvious. We now focus
on delivering feedback and insights to developers to support them and positively
influence their behavior.

Workspace Awareness: Several existing interventions fall into the sub-class of
workspace awareness tools. These use data on developer activity and display
them to developers — usually in a continuous and unobtrusive manner. Palant́ır
by Sarma et al. [41] is one of the more prominent examples. Notably, it uses a
change severity metric to decide how prominently a change should be displayed
to a developer.

What Developers Want: Treude et al. [56] recently reported on a qualitative
study in which they investigated how developers believe activity should be mea-
sured, summarized, and presented. Among other findings, they report that unex-
pected events such as changes in estimates, new dependencies, or API changes
could be highly valuable for developers to be notified of. With UEDashboard [27],
they have recently shown a tool that supports detecting and displaying such
unusual events.

Finding Expertise: Guzzi and Begel [21] present CARES, a Visual Studio exten-
sion. When opening a file under version control, CARES displays a list of devel-
opers who had previously committed changes to that file. The authors report
that developers in an evaluation successfully used CARES to find relevant col-
leagues to talk to.

Establishing and Changing Habits: Pham et al. [36] augment the Eclipse IDE
with a testing-specific dashboard that presents developers with a set of signals
inspired by the social transparency framework [54]. The authors’ aim is to nudge
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novice or newly hired developers towards the testing culture implemented by
existing developers.

Finally, Teamfeed [49] is a Web application that uses a very simple metric —
the number of commits made by a developer in a project — to create a project-
internal developer ranking. The first author conducted a quasi-experiment on
this intervention with student developers, which we report on in detail in the
following section.

Take-away: Often, the problems of software engineering are being worked on
from the perspective of software engineers. Adding a more design-oriented lens
to the process can lead to more interesting results in both practice and research.
In our opinion this specific combination of fields still contains much unrealized
potential for interdisciplinary collaboration.

3 Making Analytics Feedback Useful: Gamification
of Version Control

The preceding section has discussed a range of different ideas on measuring and
giving feedback on developer collaboration — yet it has merely scratched the
surface of each of the few areas it addresses. We suspect that choosing the right
things to measure and giving appropriate feedback could be one of the more
challenging aspects in People Analytics.

In the following, we show how a very simple metric — the number of com-
mits a developer makes to a repository — can be used to influence the commit
behavior of a cohort of student developers. This illustrates that what is measured
potentially matters less than how it is presented to developers.

The quasi-experiment we are about to describe evaluated the Practice Adop-
tion Improvement Process (PAIP). PAIP is a systematic process for improving
the adoption of software engineering practices, and includes a catalog of patterns
that can be applied during that process.

The process, the catalog, as well as the quasi-experiment are part of Singer’s
thesis [46]. They are an example for a specific application of People Analytics —
namely affecting behavior change in how developers collaborate.

3.1 Introduction

Together with Stapel and Schneider [49], the first author conducted the following
quasi-experiment while in Hannover, Germany. In a student project lasting a full
semester, we attempted to improve the adoption of version control practices in
small teams of student developers. We used early versions of both PAIP and
the catalog of adoption patterns and used the experience from this evaluation
to refine both.

A quasi-experiment is an experiment in which the assignment of subjects
to the control vs. treatment conditions is non-random. In our case, the control
group was comprised of data from the version control repositories of previous
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years in which our group organized this project. The treatment group was the
cohort of students taking the project in the fall term of 2011.

Developers do not always strictly follow software development processes and
software engineering practices [46]. Even though individuals may be aware of a
practice and its advantages, as well as capable of implementing it, they do not
always adopt it — a situation called the Knowledge-Attitude-Practice-gap (or
KAP-gap) in the innovation-decision process by Rogers [40].

In centralized version control systems such as Subversion2, developers should
commit early and often to decouple changes from each other and to spot con-
flicts with the work of other developers earlier [4]. To make browsing historical
data easier, each change should include a description of its contents — the com-
mit message. Even though many developers know of these or similar guidelines,
they do not always follow them. This can influence the maintainability — and
therefore quality and costs — of a software project negatively.

In our experience, student projects can be problematic in this regard: devel-
opers include several different features and fixes in a single commit. They leave
commit messages empty. These problems occur regularly, even though the orga-
nizers of the project emphasize every year that they want students to commit
regularly, since the version control repository is the only way for our group to
continue work on the students’ projects later — for which a meaningful commit
history would be useful. The organizers also emphasize that other students —
peers of the student developers — might need to access the repository in the
future, e.g., to improve on one of the student projects for a thesis.

However, the problem persists. We suspect the reason to be a combination of
missing knowledge regarding best practices and a lack of motivation for spending
the additional effort needed for thoughtful commits. We therefore decided to
apply an early version of PAIP in the fall 2011 term’s project and used a selection
of adoption patterns to create a persuasive intervention to alleviate this problem.
Before documenting our application of PAIP, the following section introduces the
experiment context.

3.2 Experiment Context

Each fall semester, our research group organizes the software project (SWP)
course, a mandatory course for computer science undergraduates. The course has
roughly 35 to 70 participants every time, most of them in their fifth semester.
The students form teams of four to six members, and elect a project leader as
well as a quality agent. The project starts at the beginning of October and lasts
until the end of January.

The members of our research group act as customers, proposing software
projects that we would like to have developed. That way, we are able to provide
projects with real requirements while keeping control of their size and technolog-
ical demands. This is beneficial for the comparability of projects in experiments

2 http://subversion.apache.org.

http://subversion.apache.org
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such as the one presented here. Usually, each student team will work on a dif-
ferent project with a different customer, however some projects may be given to
multiple teams to work on independently.

Each project is divided into three main phases: requirements elicitation, soft-
ware design, and implementation. After that, customers get to try out the pro-
duced software and assess their compliance with requirements in a short accep-
tance phase.

After each phase, the teams have to pass a quality gate (QG) to proceed to
the next phase. This ensures a minimum quality of the artifacts developed in
each phase. If a team fails a quality gate, they are allowed to refine their artifacts
once. Failing the quality gate for a single phase repeatedly would lead to failing
the course. However, this has not happened yet.

So far, we have conducted this course every year since 2004. For this exper-
iment, we only consider the years starting with 2007, as this was the first year
we had the students use Subversion for version control. The process we use and
the size of the projects have not changed significantly since then. The duration
has constantly been the whole fall semester. While each project is different, we
take care to always provide projects with similar requirements regarding effort
and proficiency in software development. This is to ensure fairness between the
teams with the added benefit of better comparability.

The preconditions regarding the participants have been very stable. Our group
teaches all the basic courses on software engineering, software quality, and version
control. The contents of these courses have remained similar over the years.

In the first phase, students make appointments with their customers and
interview them about their requirements. They produce a requirements specifi-
cation that they need to get signed by their respective customer to proceed to
the next phase. In the second phase, the teams can choose between preparing
an architecture or creating exploratory prototypes. In both variants, they are
required to produce a software design document. They implement the actual
applications in the third and final phase.

During the project, a member of our group will act as coach, answering
questions about technical subjects and the development process. To create time
scarcity, each team receives six vouchers for customer appointments of 15 min
each and six vouchers for coach appointments of 30 min each.

At the end of the project, the customer executes the acceptance tests from
the requirements specification and decides whether rework is needed. Once the
customer has finally accepted or rejected the software product, the role-play ends.

Finally, we conduct an LID session with each team. LID — short for Light-
weight Documentation of Experiences — is a technique for the elicitation of
project experiences [42]. A typical LID session for the course takes about two
hours during which the team members and a moderator jointly fill in a template
for experience elicitation. An LID session inquires students about impressions,
feelings, conflicts, and advice, and has them review the whole project from begin-
ning to end. In the sessions, we emphasize that their passing of the course will
not be affected anymore and encourage them to honestly describe the negative
experiences as well.
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For each team, we provide a Subversion repository, a Trac3 instance for issue
tracking, and a web-based quality gate system that is used to progress the teams
through the project phases. The Trac instance is linked to the team’s version
control repository, so students are able to see their team’s commits using either
Trac or any Subversion client.

3.3 Experiment Design

This section documents how we applied PAIP and deployed a persuasive inter-
vention — with a Web application called Teamfeed as its treatment — to a stu-
dent population of 37 participants. The section’s organization is based on PAIP’s
first five steps: Characterize Context, Define Adoption Goal & Metrics, Choose
Adoption Patterns, Design Treatment, and Deploy Intervention. The succeeding
section implements the sixth step: Analyze Results.

Characterize Context. In the first step of PAIP, the change agent determines
the current context in which PAIP is to be applied. This entails the practice for
which adoption should be improved and its properties, as well as the character-
istics of the developer population.

The Software Engineering Practice. To apply PAIP, the change agent decides
whether the practice for which adoption is to be influenced is comprised of
primarily routine or creative tasks. This experiment is concerned with practices
for committing to version control, which involves deciding when to commit, what
to commit, and how to describe it in the commit message. Based on the rough
guidelines given in PAIP’s description [46], we determine that our practice entails
creative tasks.

The Developer Population. Regarding the developer population, the change
agent determines whether there are any existing adopters of the practice that
could act as role models. As we have seen some student developers adhering
to good committing practices in previous years, we decide that we can indeed
assume existing adopters in our population.

Define Adoption Goal & Metrics. In this second step, we define the adoption
goal that the intervention should be optimized for. To measure success in the
last step, we define metrics.

Defining a Goal. As advised by PAIP, we first choose simple goals that will
improve the performance of those developers with less experience. Further
improvements would be possible in future iterations. Therefore, we want stu-
dents to commit at all, to commit more often, to commit more regularly, to
write commit messages for their commits, and to write longer commit messages
overall.

3 http://trac.edgewall.org.

http://trac.edgewall.org
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When defining the goal, PAIP requires the change agent to choose either one
or both of “Start Adopting a New Practice” or “Improve Adoption of a Known
Practice”; for our experiment, we choose both. In every previous instance of the
software project course, there have been some students who never committed to
version control, while most did commit at least once. Some of those committed
only in bursts, some committed more regularly; some wrote commit messages,
and some others did not. For the goals above, we therefore want to both increase
adoption and increase frequency.

Research Questions. For the context of this evaluation, we formulate our
goals into research questions that we will investigate in the succeeding section,
documenting PAIP’s sixth step:

– RQ 1: Does our intervention influence student developers to make more com-
mits and space them out more evenly over time?

– RQ 2: Does our intervention influence student developers to write more and
longer commit messages?

Defining the Metrics. To measure our previously defined goals, we choose the
metrics listed in Table 1. The table also assigns metrics to research questions.
Most metrics are self-explanatory, except possibly the time between consecutive
commits. We use this metric to measure whether developers commit more regu-
larly — that is, more evenly spread out over time, with fewer bursts of commits.
Assuming a constant number of commits, a more regular committing behavior
would then result in the median time between commits to increase.

Table 1. Summary of the defined metrics, assigned to their respective research
questions.

RQ Metric Counting rule

RQ 1 c Number of commits per user

ΔtC,avg

ΔtC,med

Average and median time between two consecutive commits of a
user in seconds

RQ 2 cM Number of commits with message per user

cM/c Message-to-commit-ratio per user

lM,avg

lM,med

Average and median number of characters of the commit
messages of a user

We follow the playful metric recommendation [46] in that we never connected
the committing behavior of students with actual consequences, such as passing
or failing the course. We made this clear to students in person and via email,
emphasizing that we provided the Teamfeed tool purely for the students’ own
benefit.
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Finally, PAIP requires us to define when to take measurements and to record
a baseline measurement. For this quasi-experiment, our baseline — i.e., the con-
trol group — consists of the Subversion repositories collected during previous
instances of the course from 2007 to 2010. These repositories contain the commits
of 214 students. The results are measured after the course has ended.

Hypotheses. For our experiment, we derive the alternative hypotheses for
our research questions. We assume that a positive influence on the commit
behavior of developers can be exerted by deploying our persuasive intervention.
This influence should lead to more commits per developer, to temporally more
evenly spaced commits, to more commits with messages per developer, and to
longer commit messages. Accordingly, our respective null hypotheses are that
the deployment of the intervention has no influence on these phenomena.

Choose Adoption Patterns. The previous two steps of applying PAIP reveal
that we want to either start or improve the adoption of a practice that is com-
prised of relatively creative tasks. We assume to have some existing adopters.
Based on this information, we choose the following adoption patterns for our
intervention in the third step of PAIP. For each pattern, we also repeat its solu-
tion below.

– Normative Behavior: “Make explicit what normative behavior should be
by continuously publishing the behavior of developers, positively emphasizing
desirable behavior.”

– Triggers: “Use notifications to cue developers to applying a practice by
directing their attention to a task related to the practice. To support moti-
vation, associate triggers with positive feedback or a goal to be reached. Do
not overload developers with triggers.”

– Points & Levels: “Award points and levels for the activity that is to be
started or intensified. Provide a space for users to display their points and
levels, e.g., on a user profile. Give clear instructions on how to attain different
levels.”
Note that the recommendation for clear instructions was added only after
the completion of this experiment, and therefore was not taken into account.

– Leaderboard: “Use a metric that measures compliance with the software
engineering practice to rank developers against each other, creating explicit
competition. If possible, have groups compete against each other instead of
individual developers against each other.”
Note that the recommendation for groups competing against each other was
added only after the completion of this experiment, and therefore was not
taken into account.

– Challenge: “Provide developers with explicit, attainable, and challenging
goals. Make sure developers understand what the conditions for attaining the
goal are and give explicit feedback on results. Prefer challenges that require
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the developer to learn something new over those that merely require reaching
a certain performance as measured by a metric.”
Note that the recommendation for learning goals was added only after the
completion of this experiment, and therefore was not taken into account.

– Progress Feedback: “Provide developers with positive feedback on the
progress they are making in their application of the practice.”

Except for the knowledge stage — which was not addressed by the early
version of PAIP —, this selection of adoption patterns covers all stages of the
innovation-decision process that are relevant to PAIP. Three of the patterns are
from the motivation category: as mentioned before, we suspect missing motiva-
tion to be a reason for the adoption issues.

3.4 Designing a Treatment

Using the adoption patterns chosen in the previous step, we now create a treat-
ment that implements the patterns. This design is in part informed by the exam-
ples listed for each adoption pattern.

Newsfeed. A newsfeed displaying the version control commits for each team
implements the Normative Behavior adoption pattern. When no commit mes-
sage is given, the application displays a highlighted text stating that a message is
missing.

Leaderboard. A list of a team’s members, ordered by their respective number
of commits so far, implements the Leaderboard adoption pattern. Next to the
name of each team member, the member’s current number of commits is given.
Below, the total number of commits for the team is displayed.

Milestones. At predefined thresholds for numbers of commits, the application
congratulates users and teams on reaching a milestone. This implements the
Points & Levels pattern. By slowly increasing the distance between the thresh-
olds, this also implements the Challenge pattern: by committing, developers are
able to recognize that there will be another milestone at an even higher number
of commits, providing them with a goal. The congratulatory messages implement
the Progress Feedback pattern.

Notifications. For positive events, such as reaching an individual or team mile-
stone, the application sends out email notifications — this implements the Trig-
gers adoption pattern. The congratulatory messages in the emails implement
the Progress Feedback pattern.

Weekly Digest. Every Sunday, the application emails a weekly digest to each
developer. It shows the current leaderboard, as well as any milestones reached in
that week. This implements the Triggers adoption pattern. The congratulatory
messages that were given when a milestone was reached implement the Progress
Feedback pattern.
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Teamfeed. We now present Teamfeed, a Web application that uses email for
notifications. It periodically reads the commits to each team’s repository and
saves them to a database. These are then displayed in a newsfeed for each
team. Every student in the project can log in to Teamfeed using their Sub-
version account and is then presented with their respective team’s newsfeed.
The newsfeeds of other teams are not accessible to the students. Figure 2 shows
an anonymized screenshot of the application in which the names of students and
their team have been altered.

Fig. 2. A screenshot of Teamfeed’s newsfeed and leaderboard.

Reaching a milestone generates a special post to the newsfeed. For the mile-
stones, we defined thresholds of 1, 10, 25, 50, 100, 250, 500, 750, 1000, 1500,
2000, 2500, 3000, 4000, 5000, 7500, and 10000 commits. These generate posts
such as “Congratulations! Jane Doe has reached her 200th commit!” or “Won-
derful! Your team has just reached the 1000th commit!” We based the thresholds
on previous semesters’ commit counts and added a buffer.

On the right, the leaderboard lists the team members and the counts of
their respective commits so far. For higher ranks, name and commit count are
displayed in a larger font.

Each Sunday at around 3pm, Teamfeed sent out the weekly email digest to
each student. The digest summarizes how many commits the individual student
has made in the past week, but also provides this information about their team-
mates. It also mentions milestones that were reached during the week and shows
the current state of the leaderboard.

Deploy Intervention. Once the treatments have been created, the change
agent deploys them as a persuasive intervention in the organization. We deployed
Teamfeed at the start of the software project course in the fall term of 2011.
The students were told that the purpose of Teamfeed was to support their col-
laboration.
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3.5 Results and Analysis

The final stage of PAIP involves taking a measurement and comparing it to the
baseline to assess the effectiveness of the intervention. This informs the next
iteration of the process.

Table 2 shows the data sources we used for data collection in our experiment.
It includes the data from five years of the software project course, i.e., the data
accumulated in the fall terms of the years 2007 through 2011. The first four years
were used as the control group. In 2011, we introduced the Teamfeed application
and therefore used it as our treatment group.

Table 2. Overview of data sources and their values for number of subjects (n), number
of subjects who committed (nC), number of subjects who never committed (n − nC),
percentage of committing subjects (nC/n), number of total commits (ctotal), and aver-
age commits per subject (ctotal/n).

Group Control Teamfeed

Term 2007 2008 2009 2010 Σ 2011

n 40 40 76 58 214 37

nC 31 36 73 55 195 37

n − nC 9 4 3 3 19 0

nC/n 78% 90% 96% 95% 91% 100%

ctotal 3973 3680 6993 7223 21869 4842

ctotal/n 99 92 92 125 102 131

In total, there were 26,711 commits in the five years (ctotal). In the first four
years, each participant made 102 commits on average (ctotal/n). In 2011, this
value was at 131 commits. 251 students took the course over the five years, which
can be seen as n in Table 2. The treatment group consisted of 37 participants.

nC documents the number of students that did commit at all in the respective
year. As the values for nC/n show, all students in the treatment group committed
at least once to version control (100%). In the previous years, however, some
participants never made a single commit (i.e., on average, 91% committed at
least once).

Descriptive Statistics. We now present the data we collected for the metrics
we defined, aggregated in Table 3 and visualized as box plots in Fig. 3. Each
set of data is declared for the control group (C) and the treatment group (T),
respectively. For each value, we provide the minimum, the median, and the
maximum value.

For example, Table 3 shows a 76% increase in median commits per partici-
pant (c) for the treatment group. The ratio of commits with messages to commits
overall (cM/c) increased by 75%. We now discuss whether these and other dif-
ferences are statistically significant.
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Fig. 3. Box plots of the data collected for the metrics.

Table 3. Minimum, median, and maximum values for the collected metrics: number of
commits per subject (c), average (ΔtC,avg) as well as median (ΔtC,med) time between
commits, number of commits with a message per subject (cM ), percentage of commits
with a message (cM/c), and average (lM,avg) as well as median (lM,med) lengths of
commit messages.

Metric Group Min Median Max

c Control (n=214) 0 69 683

Treatment (n=37) 7 122 387

ΔtC,avg C (n=193) 00:00 17:55 >17d

hh:mm T (n=37) 05:51 15:09 >8d

ΔtC,med C (n=193) 00:00 00:27 >6d

hh:mm T (n=37) 00:00 00:39 >1d

cM C (n=195) 0 22 587

T (n=37) 1 69 354

cM/c C (n=195) 0% 49% 100%

T (n=37) 4% 86% 100%

lM,avg C (n=182) 1 39 211

T (n=37) 11 47 92

lM,med C (n=182) 1 28 165

T (n=37) 9 36 85
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Hypothesis Testing. For most metrics, we were able to determine a statisti-
cally significant difference between the values for the control group and the values
for the treatment group. We performed a Kolmogorov-Smirnov normality test for
all the metrics. These tests showed that the data do not follow a normal distri-
bution. Therefore, we had to use the non-parametric two-tailed Mann-Whitney
U test to test for the significances of differences. Table 4 presents the results of
our tests for statistical significance.

Table 4. Overview of statistical test results.

RQ Metric Control Treatment Difference Confidence

RQ 1 c 69 122 +76% p < 0.01

ΔtC,avg 17:55 15:09 -15% p > 0.1

ΔtC,med 00:27 00:39 +44% p < 0.05

RQ 2 cM 22 69 +213% p < 0.01

cM/c 49% 86% +75% p < 0.01

lM,avg 39 47 +20% p < 0.1

lM,med 28 36 +28% p < 0.05

For research question 1, there is a significant difference between the number
of commits per student for the two groups: an increase in 76% (c; p < 0.01). The
average time between commits does not differ significantly (ΔtC,avg). However,
the median time between commits exhibits a significant (ΔtC,med; p < 0.05)
difference: an increase in 44%. We therefore reject the null hypotheses for the
first and the third metrics of research question 1.

The measurements for research question 2 show significant differences. The
number of commits with messages per developer increased by 213% (cM ; p <
0.01); the ratio of commits with messages to overall commits increased by 75%
(cM/c; p < 0.01).

The difference for the average length of commit messages is not significant,
with a 20% increase (lM,avg; p < 0.1). The difference for the median length
of commit messages is significant with a 28% increase (lM,med; p < 0.05). We
therefore reject three of the four null hypotheses for research question 2.

Qualitative Analysis. To better understand the effects of our intervention,
we now provide an additional qualitative discussion based on the LID sessions
conducted at the end of the project. At the end of the sessions, we inquired
about each team’s impressions of Teamfeed. This provided us with some notable
insights:

– More experienced developers often ignored Teamfeed and the emails it sent.
Some even had setup a filter in their email clients for this purpose. However,
only few seemed to be annoyed by the emails. In an industry setting, one
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might want to give developers a way to opt out of such email. Yet, none
asked us about such an option during the course.

– Several of the more novice developers reported that they felt motivated by
the milestones. The only team which reached the 1000 commits milestone
was comprised of such members.

– No developer reported any manipulative attempts by themselves or by team
mates. To help ensure this, we performed regular sanity checks of commits
and commit messages, finding no indication for manipulation (such as empty
commits). Overall, we estimate to have sampled about 5% of commits in this
manner.

– One developer explicitly said that Teamfeed’s milestones made him commit
in smaller batches. Instead of putting several bug fixes into a single commit,
he committed his changes after every single fix. In our view, this is desirable
behavior for centralized version control systems.

Research Questions. In our research question 1 we asked: Does our inter-
vention influence student developers to make more commits and space them out
more evenly over time?

To answer this question, we defined three metrics: the number of commits
per student, the average time between commits, and the median time between
commits. Based on our measurements, we were able to reject the null hypothesis
for the first and the third metrics. Therefore, we conclude that our treatment
was indeed able to influence student developers to make more commits and space
them out more evenly over time. Not only did it lead to a significantly higher
number of commits per developer, but also resulted in a more evenly distributed
time between commits.

Research question 2 asked: Does our intervention influence student developers
to write more and longer commit messages?

For this question, we defined four metrics: the number of commits with mes-
sages, the ratio of commits with messages to overall commits, the average length
of commit messages, and the median length of commit messages. For three of
these metrics, we were able to reject the null hypothesis. We conclude that the
introduction of our application did indeed influence student developers to write
more and longer commit messages. More commits contained commit messages
at all, and those that did contained longer messages.

3.6 Threats to Validity

This section discusses threats to the validity of our quasi-experiment. We show
how we tried to minimize them through the experiment design and mention
remaining limitations.

Internal Validity. A significant difference between the control group and the
treatment group does not in itself represent a causal relationship between our
intervention and the differences in measurement. Other confounding factors
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might have had an influence. The population itself, the students’ education,
details in the execution of the course, and our behavior towards the students
might all have been different.

The advantage of using different populations for the control and treatment
groups, however, is that there should have been no confounding effects with
regard to learning or maturation. In addition, we took care to execute the course
the same as in previous years. As our group also provides the basic software
engineering courses, we feel qualified to say that we did not notice any notable
differences in the students from the control group compared to the students in
the treatment group. Additionally, our courses provide the basic education on
version control, which was the same for both groups.

It is conceivable that general trends in software development and general
computer use changed how students adopt version control practices.

Through the qualitative interviews conducted at the end of the study, we
might have noticed such trends, as we also inquired about how students used
version control — not merely how they used Teamfeed. In these interviews, we
did notice one change in computer use: to exchange files, students had started
using Dropbox, a service that makes it easy to share folders between different
users and synchronizes them over the Internet. In previous cohorts, students had
used version control for exchanging files.

This change in computer use might have influenced the measured impact
of our intervention, as there would have been fewer commits in the treatment
cohort. Those would have been commits made solely for the quick and ephemeral
exchange of project files, however — something that we wouldn’t necessarily
consider the intended use of version control.

Construct Validity. Whether the practices we chose for version control are
preferable in a given software engineering situation is debatable. However, we
consider them an important step for the population we investigated. Populations
at other levels of version control proficiency may require different interventions.
Even though the use of metrics in software development can be problematic [3],
our research questions and the metrics we derived address the adoption of these
practices as directly as possible. We therefore consider them appropriate.

In a future investigation, we plan to examine any quality differences in the
commits and commit messages of the control and treatment groups. A prelimi-
nary investigation of 100 commit messages showed indications for a decrease of
nonsense messages (“hahaha!”), a decrease of purely technical messages that do
not mention a change’s utility (“add getter getUser()”), and an increase in men-
tions of functional changes (“fix incompatibility with framework version 1.2.5”).

One possible effect of public, competitive metrics is that people try to “game
the system” — i.e., they try to increase their value for the metric using the easiest
strategies, which might often not be what the creators of the system intended.
In our case, these would be empty commits or nonsense commits. To rule this
effect out, we randomly sampled some of the commits from our treatment group.
We found no indications for invalid or manipulative commits.
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Conclusion Validity. To mitigate threats to conclusion validity, we used the
data collected over several years of the software project course for our control
group. These 214 participants, combined with 37 participants in the treatment
group, were suitable to provide statistically significant results. To decrease the
risk of manual errors, all data were collected automatically.

External Validity. The participants of our experiment were mostly students
of computer science in their 5th semester. As the German Bachelor of Science
degree lasts 6 semesters, most students were almost finished with their stud-
ies. As our treatment was directed at issues with version control practices we
had experienced from similar populations, we cannot generalize this concrete
intervention to different populations. Another application of PAIP, while more
elaborate than a simple transfer of the intervention, would be more sensible.

It is questionable how many metrics and additional interventions can be
introduced before software developers start ignoring such measures. The toler-
able amount of such treatments might be very low. Further research regarding
such scenarios is warranted.

Similarly, our software projects are restricted to a single semester, i.e., about
four months. We do not think that our experiment can be generalized to much
longer runtimes, as potential numbing effects seem plausible. Again, further
research is needed in this regard.

3.7 Summary

Our quasi-experiment demonstrated that PAIP and the catalog of adoption pat-
terns can be used to improve the adoption of software engineering practices —
in this case, the commit behavior of student developers. While we tried to design
our experiment to minimize threats to validity, some of them were beyond our
control. It is therefore still possible that the effects we measured were created
or influenced by other, confounding factors. However, the qualitative data from
the LID sessions back our interpretation.

This specific intervention worked for less experienced software developers in
a university setting. As we argued in section on validity, the intervention itself
might not generalize. However, this is exactly what PAIP intends: it provides a
way to create interventions that are tailored to a practice, an adoption problem,
a population, and adoption goals.

Our quasi-experiment has shown that the application of PAIP is feasible and
can be effective. While this need not be true for every possible adoption problem
or situation, this data point serves as a good indicator. More evaluations in
different contexts would be needed to improve confidence in this regard.

The metrics we chose to feed back to the students were relatively simple —
a commit count per team member and a newsfeed of commit messages. All this
information was available to previous teams via Subversion clients such as the
one included in the Eclipse IDE. Still, the different presentation of this data
made a difference in observed developer behavior.
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We believe that this suggests that People Analytics projects do not need
to measure especially interesting behavior or even do so in a necessarily exact
manner. Instead, we believe that the presentation and the context of the chosen
metrics matters most.

4 Outlook

We have discussed many options and opportunities for implementing People
Analytics projects, and have hinted at the benefits. There are many different
analyses and metrics available, originating from diverse fields. We hope that
these can be useful as starting points for future research.

In the previous section, we have shown that complicated metrics possibly are
not that important, after all. Maybe the most important research that is still
to conduct lies more in the field of HCI and psychology — our conception of
what it takes to create a tool that supports collaborative work still seems more
diffuse than we are comfortable with. This feeling is likely related to the fact that
collaboration is mostly about people, and the path towards gathering reliable
knowledge about people and the processes between them seems much less clear
than algorithmic endeavors.

So far, we have ignored the more severe challenges present in People Analyt-
ics. We conclude this paper by discussing some of the challenges we believe will
have the most impact on implementing People Analytics, and what we consider
to be likely good practices to handle them.

4.1 Gaming the System

We have discussed how metrics are likely less important than their presentation.
Using a systematic process that aligns one’s goals with metrics seems sensible
and helpful.

But at the same time, how metrics are used must be informed and systematic,
which can be challenging as there are many unknowns about the possible side
effects or second-order effects of using a certain metric.

Considering the quasi-experiment discussed in the previous section — what
would have happened if the number of commits by a student would have been
tied to their course grade?

It seems very likely that students would have been more motivated to commit
more. However, it seems similarly likely that the barrier to trying to cheat the
system would have been lower, as the potential reward would have been much
higher. Campbell [7] gives an insightful overview of how metrics — in his case,
for public policy — can have the opposite effect of what was intended.

Using metrics to influence behavior is a double-edged sword: it can have
positive results, but can also backfire. To lessen this risk, metrics should be kept
playful. That is, they should not be tied to a person’s income, their grades, or
their career options. But at the same time, for a metric to have any effect, it
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needs to be meaningful to those involved. Leaning on Deci’s and Ryan’s self-
determination theory [11], relatedness — relationships to others — could help
create meaning.

4.2 Surveillance

Tracking activity data from potentially many services that developers use
throughout the day also elicits thoughts about surveillance. If an employer uses
People Analytics to improve internal collaboration, employees could easily feel
monitored.

We believe that this would especially be the case if employees are not suffi-
ciently informed about what is being tracked about their behavior, what happens
to the data, and what the goal of the tracking is. After all, some employers could
indeed think that the number of commits per day that a developer pushes to the
repository should have a direct influence on salaries or promotions.

The only somewhat reliable solution to not tracking too many details about
developers’ behaviors would be to aggregate personally identifying data. Simply
anonymizing such data has been shown to be easily reversible, especially when
social networks are involved.

4.3 Public Data vs. Accessible Data

At the same time, we acknowledge that many things are already public, at least
within a team — commit data and calendar data being two of the more obvious
examples. That colleagues can look up these activity traces if they so wish we
consider as accepted as normal today.

In our experiment, we did not make more data public — we merely presented
it differently. All the data we used was available to every student all the time,
e.g., through a Subversion client. The same goes for GitHub’s newsfeed — it is
also just making existing, accessible data more visible and accessible with fewer
barriers.

This illustrates that the mere availability of data is usually not sufficient
to make it have an impact on behavior. In order to do that, data needs to be
presented in an accessible and goal-oriented manner.

4.4 Transparency

The most sensible strategy likely is to make transparent what is being measured
and to what end. This will help developers understand what their activity data
is being used for and, ideally, they will see a worthy cause in their employer’s
intentions. At the same time, employees can also act as an ethical canary for
their employer, notifying management of instances where a line has been crossed.
However, this will require a workplace culture that permits this. Part of such
a culture would be attempts from the organization to actually get any honest
feedback on their People Analytics projects from employees.

Ethical standards regarding these things will surely change with time. Yet
organizations should err on the side of standards that are too high.
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4.5 Conclusions

Despite the challenges mention above, the potential upsides of People Analytics
for software development are enticing. Collaboration is one of the hardest prob-
lems in software engineering, and any improvement would likely be welcome by
developers, organizations, and researchers alike.

More and more Internet-based services are becoming available and being
used. Data about employee behavior will likely become more rather than less.
Both researchers and practitioners need to be prepared so we handle it appropri-
ately. To do so, we need open discussions about ethical standards, best practices
on which metrics to use, and on appropriate delivery of feedback.

There are many more open challenges in People Analytics than we could
possibly have discussed, and even for those we have touched upon, we barely
scratched the surface. With this in mind, we hope our contribution can help
continue the discussion within the software engineering research community. We
would feel honored if you took us up on that — our email addresses are listed
at the top of the paper for a reason.
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Abstract. So, you can write a program that generates other programs.
Sorry, . . . not impressed. You want to impress me? Make sure your
program-generating program only produces well-formed programs. What
is “well-formed”, you ask? Well, let’s start with “it parses”. Then let’s
get to “. . . and type-checks”. You want to really impress me? Give me an
expressive language for program generators in which any program you
write will only generate well-formed programs.

In this briefing, we will sample the state-of-the-art in program genera-
tion relative to the above important goal. If we want to establish program
generation as a general-purpose, disciplined methodology, instead of an
ad hoc hack, we should be able to check the generator once and immedi-
ately validate the well-formedness of anything it might generate. This is
a modular safety property for meta-programs, much akin to static typing
for regular programs.

Some of the emphasis will be on our own work on “class morphing”
(or just “morphing”): the statically-safe adaptation of the contents of a
class, depending on other classes supplied as parameters. Along the way,
lots of other techniques will be discussed and contrasted, from different
template facilities, to syntactically-safe program generation, to program
staging techniques.

1 Introduction

A program generator (or just generator) is a program that generates programs
expressed in a high-level language. The language in which the generator is writ-
ten (commonly called the host or the meta language) and the output language
(commonly called the object or target language) do not have to be the same,
although they often are.1

Generators arise in so many practical scenarios that one may wonder whether
they deserve a special name, or they are merely “programs”. Generators appear
as wizards or refactorings in IDEs, as template or macro libraries, as imple-
mentations (compilers) of domain-specific languages (DSL), as high-performance
optimizing libraries, as modularity (e.g., aspect-oriented) mechanisms, as frame-
works (e.g., for dependency injection), and much more.
1 A closely related concept is that of a program transformer, which modifies an existing

program, instead of generating a new one. The main principles and ideas behind
generators and transformers are virtually identical. In this text, we write “generator”
to mean “generator or transformer”.
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Generators exist because of the desire, as old as programming itself, to
automate, elevate, modularize or otherwise facilitate program development. In
practice, generators are one of many technologies for enabling modularity and
software reuse—other examples are binary or source libraries, application frame-
works, component technologies, and services. However, generators are often the
technique of last resort. They are used for programming automation patterns
not covered by other, conventional technologies. Generators offer the potential
for more advanced optimizations, syntactic convenience, or static checking than
plain libraries or component technologies.

Generators are also an intellectually fascinating topic: what can be more
interesting to a computer scientist than computing programs? The canonical
sensationalist example is self-generating programs. For example, we can have:

((lambda (x) (list x (list'quote x)))

'(lambda (x) (list x (list'quote x))))

in Lisp or:

main(a){a="main(a){a=%c%s%c;printf(a,34,a,34);}";printf(a,34,a,34);}

in C.
The power and appeal of generators comes at a cost, however. Programmers

often view program generation technology as low-level and largely ad hoc. A
common complaint concerns debugging: an error in the generated program can be
very hard to debug and may require full understanding of the generator itself. In
more general terms, the fault is due to lack of modular reasoning. The generator
author cannot easily consider what the generator will do for every input, only
for the inputs he/she has tested. The generator user (i.e., the end programmer)
should not have to reason about the code produced by the generator, only about
the way he/she uses it.

This need is the focus of our briefing. We discuss structured program gen-
eration techniques, i.e., techniques that can offer guarantees on the correctness
(w.r.t. static semantics, i.e., at most type-correctness) of generated programs
before these are generated, i.e., for all inputs to the generator. We will refer to
this property as modular safety of a generator.2

Ensuring that a generator only produces well-formed programs (typically
under some assumptions on the generator input) is practically important and intu-
itively appealing. Viewed as a type-checking matter, this property is quite similar
to static typing of regular programs. Much like in standard static typing, we want
to statically check the generator and be sure that no type error arises during its
run time, which happens to be the compile time of the generated program.

If the problem of structured program generation is solved, “program gen-
eration” will become mere “programming”, raising the level of programming
automation without sacrificing high-level, modular reasoning. Consider: if a
generator that can do most useful things that current generators do can also
be checked modularly, i.e., for all possible inputs, then why does it matter that

2 This is also occasionally called meta type-safety.
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it is a generator? The output program will never need to be inspected by the
end programmer. Instead, we might prefer to mentally model what the generator
does as program generation, while in reality we will not care whether a program
is actually ever generated.

In the next sections, we present current program generation mechanisms
and levels of modular safety, before focusing on state-of-the-art techniques for
modular safety of generators. Our goal is not to offer an exhaustive survey of
the literature but to inform of different levels of reasoning power, with selected
pioneering or representative work in each one.

2 Kinds of Generation and Program Transformation

There is a large variety of mechanisms that can be used to generate or transform
programs—for instance, see Reference [12] for a representative comparison. We
briefly survey the general classes of such mechanisms, for reference in future
sections.

Generation of programs as text. The most basic technique for program gener-
ation is that of producing character strings containing the text of a program,
which is subsequently interpreted or compiled. For instance, a common approach
for generating database queries (in SQL) inside an imperative language program
is via string concatenation—for instance:

sqlProg ="SELECT name FROM" + tableName + "WHERE id =" + idVar;

Note the distinction between target language identifiers (name, id) and meta-
variables (tableName, idVar). The latter correspond to parts of the generated
program text that may vary, depending on the generator’s execution. The former
are fixed and need to have a meaning in the context of the generated program.
(We discuss the topic of what generated names may refer to in the next section,
under “Scoping and Hygiene”.)

Text-based program generation is readily available in most programming
settings, yet clearly low-level. There is nothing in the generator code to indicate
that the string that is being assembled represents a program. Therefore, this
program could have errors at any level of program processing (lexical analysis,
parsing, static semantics, etc.).

Syntax tree manipulation. A more sophisticated, yet commonly used, technique
is to generate the syntax tree of a program, instead of its unstructured text.
This requires defining host language concepts that correspond to the syntactic
structure of the target language—an idea we will revisit in the next section. For
example, our SQL-generating program could be written as follows:

sqlProg = new SelectStmt(new Column(name), table,

new WhereClause(new Column(id), idVar));
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The generated program can be produced by either pretty-printing the syntax
tree and invoking a traditional language processor (e.g., a compiler for the target
language) or by interfacing with the post-parsing stage of such a target language
processor.

Code templates, quoting. Generating programs by assembling syntax trees can
be tedious, even in languages with pattern-matching constructs [54]. Therefore,
several facilities for program generation (e.g., [2,35,43,56], among many) offer
the ability to generate program fragments by “quoting” the code to be gener-
ated, i.e., using code templates with constant and variable parts. This requires
language constructs for generating program fragments in the target language
(typically called a quote—e.g., “‘[...]”) as well as for supplying values to fill in
holes in the generated syntax tree (typically called an unquote or escape—e.g.,
“#[...]”). For instance, our earlier code fragment might be written as:

sqlProg = ‘[SELECT name FROM #[table] WHERE id = #[idVar]];

As can be seen, this approach (often termed meta-programming with concrete
syntax [54]) approximates the syntactic simplicity of a plain evaluated program,
significantly simplifying the program text of the generator.

Macros. Another meta-programming approach of widespread use is macros:
reusable code templates with pre-set rules for parameterizing them and yielding
different generated program fragments. A typical macro only allows substitu-
tion of parameters in its body, as opposed to more general program generation
control flow—e.g., a loop that generates an unbounded number of statements.
A reference facility for high-level macros is the Scheme macro system [46]. A
swapping macro, replacing its uses by an expression that swaps two values, can
be written as follows:

(define-syntax-rule (swap x y)

(let ([tmp x])

(set! x y)

(set! y tmp)))

Macro languages can vary greatly in sophistication and are difficult to catego-
rize. A common element is that they blend the distinction between generator and
generated program. The generated fragment is typically not treated as a data
structure (e.g., a syntax tree) but instead replaces program expressions wher-
ever it occurs. Thus, the usual relationship between meta-program and object
program is inverted: in macros, the default, undistinguished program text is as-if
generated and augmented/transformed by the output of the generator (i.e., the
macro), whereas in typical program generation undistinguished program text is
part of the generator and generated code is clearly marked.
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Generics. Common (type-)genericity mechanisms in programming languages
may occasionally be powerful enough to be considered general-purpose program
generation facilities. Genericity refers to the ability to parameterize a code tem-
plate with different static types. Mechanisms such as C++ templates work by
producing specialized code for each concrete type parameter. Furthermore, the
specialization mechanism is powerful enough to allow conditional reasoning, and
templates can be recursive, thus allowing full Turing-complete computation [53].
C++ templates are also explicitly able to compute over compile-time constants,
using regular C++ operators. This capability is used to define a compile-time
adder in the following code fragment:

template<int X, int Y>

struct Adder {

enum { result = X + Y };

};

There are several standard techniques that have harnessed the expressive-
ness of C++ templates to yield arbitrary program generation capabilities, as
discussed in References [12,52].

Specialized languages. Beyond the above classes of mechanisms, there are sev-
eral specialized languages for program generators. For example, aspect-oriented
programming facilities can be viewed as implicit transformations of a program
[28,29]. This is most evident in features such as inter-type declarations:

aspect S {

declare parents:

Car implements Serializable;

}

The above aspect adds a supertype (Serializable) to an existing class Car.
As in more overt program generation/transformation techniques, we can ask the
question of what guarantees are offered on the generated program, when the
aspect is generic and can apply to yet-unspecified classes.

In Sect. 4, we will see more examples of languages specifically designed for
expressing meta-programs.

3 Kinds of Generator Safety

The main focus of this briefing is on statically-safe (or just safe for brevity) pro-
gram generation techniques: certifying the generator as “safe” should guarantee
the well-formedness of any generated program.

One can perhaps debate whether the static safety of a generator is an essential
feature. After all, the generated program will be checked statically before it
runs, so why try to catch the same errors before the program is even generated?
The answer is that static checking is not mainly intended to detect errors in
the generated program or even errors in the generator input, but errors in the
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generator itself. Such errors are typically mismatched assumptions: the generator
fails to take into account some input case, so that, even though the generator
writer has tested the generator under several inputs, other inputs result in badly-
formed programs. Although these errors will be detected at compile time of the
generated program, this is (at least as late as) the generator’s run time. Thus,
errors of program well-formedness, which a programmer would hope to have
eliminated once and for all, can arise dynamically, as far as the generator is
concerned.

Consider a simple scenario in a realistic generator. The generator examines
an input program, and for every class containing a designated method—e.g.,
register—produces registration code that invokes the method. The generated
code will fail to compile if the register method is private. This is an error
in the generator itself! The generator writer has failed to take into account
the possibility of private register methods. (Multiple fixes may be possible:
the generator could ignore non-accessible methods, or the generated code could
invoke them indirectly—e.g., via reflection.) Even worse, the generator writer
could have extensively tested his/her code with large, realistic inputs, just never
with private register methods.

As discussed in the introduction, tools that only generate well-formed
programs are often called structured meta-programming tools. The term “struc-
tured” only captures the basic premise, however: there are several levels of
well-formedness and we need to distinguish them for purposes of precise
characterization.

Lexical and syntactic well-formedness. The first level of static safety for gener-
ators is safety with respect to lexical and syntax checking. That is, such safety
entails employing techniques for building or checking generators so that any
generated/transformed program is guaranteed to pass the lexical analysis and
parsing phases of a traditional compiler. A common way to satisfy this property
is by encoding the syntax of the object language using the type system of the
host language. For instance, consider traditional syntax checking expressed as
context-free grammar (CFG) rules. Rules for top-level syntactic categories of
an imperative language (statement, declaration, expression) will typically take
a form such as that below:

AST ::= Stmt

| Expr

| Decl

Stmt ::= IfStmt

IfStmt ::="if" "(" Expr ")" Stmt

...

The above CFG specification can map to types for values that the generator
manipulates, as well as constructors for these values. This yields a subtyping
hierarchy3 where types Stmt, Expr, and Decl are subtypes of type AST and
3 Alternatively, one can represent a grammar as an algebraic data type (ADT), for

equivalent functionality, with respect to our static safety guarantees.
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type IfStmt is a subtype of Stmt. Furthermore, values of type IfStmt are created
using a constructor that accepts an Expr value and a Stmt value. If the generator
type checks, then the values it manipulates are guaranteed to conform to the
induced type constraints, which means that they are fragments of syntactically-
correct code in the target language, per the CFG rules. There is no possibility
of, e.g., creating an IfStmt with a Stmt instead of an Expr in the condition of
the generated if code fragment.

Scoping and hygiene. Programming languages typically support variables, which
obey scoping rules: each variable is first declared and then used, and the rules
define where the declaration starts having effect and what variables are visible
at each program point. When an identifier (i.e., a name) is used to denote a
variable, we say that the identifier is a reference to the variable, or that the
identifier binds to the variable declaration.

A correctness property of great interest for generated programs concerns the
appropriate binding of identifiers, i.e., ensuring that produced variable references
are bound to the intended variable declaration. Consider an example of meta-
programming with concrete syntax:

expr = ‘[ for (int i = 0; i < #[boundExpr]; i++) { #[bodyExpr] } ];

The generated code fragment introduces a new identifier, i, in a binding posi-
tion, i.e., in a declaration. Can this declaration bind references that the generator
programmer did not intend? For instance, if boundExpr holds an expression from
the input program, could this expression refer to a variable i, bound to the newly
declared i? Conversely, can declarations of the input program accidentally bind
references in the generated code? Mistakes in binding resolution may or may not
appear as static checking errors—e.g., binding to an unintended variable may
not be a type error, depending on the declared types and the static semantics
of the target language. Thus, the problem is a semantic one: even well-typed
programs may have a different meaning than what was intended.

The absence of unintended name binding is typically called hygiene. Ques-
tions of hygiene have been studied in depth, over some-30 years of research in
meta-programming. The same issues arise in generics (e.g., C++ templates per-
form hygienic renaming), in quoting/meta-programming with concrete syntax
[45,51], and, most prominently, in macros [10,17,32,50].

Macros have been the first setting where the question of hygiene has been
examined [32]. In macros, there is a clearly designated part of the generated
program that comes from the input program, and another that comes from
the macro definition. Therefore, the issue of hygiene takes a simple form: a
macro system is hygienic if the familiar lexical scoping rules (i.e., an identifier is
bound to a declaration in its lexical context) are obeyed. Hygienic macros are a
fundamental feature of Scheme [17,46]. Racket, a Scheme descendant, goes even
further by implementing the whole language using code generation via hygienic
macros [50].
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Hygienic meta-programming systems enforce their hygiene property
automatically—typically by performing variable renaming to eliminate ambigu-
ity. Therefore, hygiene is a rather orthogonal property to the rest of the mech-
anisms we discuss in this briefing. Most of the research in hygienic mechanisms
has focused on designing and implementing the right scoping mechanisms for
meta-programs, not on finding errors (with no possibility of automatic fixes) in
the generator code.

Full well-formedness. Extrapolating from the above kinds of statically-safe pro-
gram generation, it is reasonable to ask how easy it is to achieve full static safety.
That is, to write generators in such a way that every generated program is guar-
anteed to pass any static check in the target language. This is a hard property
to ensure: static checks beyond the syntax phase (i.e., in type checking or other
semantic analysis) require context information, which is tough to maintain by
merely analyzing the generator. A rich host language can express generators with
arbitrarily complex structure, whose control-flow paths map to different static
contexts of generated programs.

To see the problem in an example, consider a program generator that emits
programs depending on two input-related conditions:

if (pred1())

emit( ‘[int i;] );

...

if (pred2())

emit( ‘[i++;] );

If, for some input, pred2 does not imply pred1 (or if the first if is unreach-
able), then the generator can emit the reference to variable i without having
generated the definition of i. This is an error in the generator and it should
be the responsibility of the infrastructure for generator development to prevent
such errors. (Of course, it is rather easy to catch this error at generation time of
the i++ fragment, but this just shifts the blame: the generator does not produce
an invalid program, but fails to produce anything.)

As the above example shows, static safety for generated programs corre-
sponds to arbitrarily complex properties of the generator’s control- or data-flow.
In our example, determining the reachability of the statement emitting the dec-
laration of variable i is a complex program analysis property.

4 Mechanisms for Fully Structured Generation

In order to achieve guarantees of full static safety for generators, we need to
place restrictions on what generators are expressible in a language or develop-
ment setting. As in any other kind of approach for establishing complex program
properties, the restrictions can take many forms: we can limit the expressiveness
of the host language for generators via disciplined syntactic or type-system con-
structs, we can permit only generators that successfully pass an analysis phase,
and more. We see such mechanisms next.
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4.1 Multi-stage Programming

A simple way to ensure the static safety of generated programs is to map them
one-to-one to fragments of the generator’s code. As a result, the generator and
the generated program can be viewed as one, are type-checked by the same
type system, and some parts of the program are merely evaluated later (i.e.,
generated). This approach is commonly called staging [27] and the program is
called multi-stage or staged. Multi-Stage Programming (MSP) is the general
paradigm for writing staged programs. MSP is a powerful and general approach,
yet with significant limitations—e.g., a statement of the generator code is not
allowed to produce arbitrarily many declarations in the generated program.

MSP views program generation as the addition of extra stages to regular
programs. Instead of a plain execution stage (possibly internally broken into
multiple stages, such as compilation and object execution) we have at least
a generation stage and an execution phase. Programmers make use of a set of
language constructs that introduce more stages for explicitly annotated segments
of their code, so that these segments are evaluated at different times. At a later
time, the previously (partially) evaluated, in earlier stages, parts of the program
can be replaced by simpler constructs, such as constant values and statements
with linear control flow.

The origins of staging constructs are found in languages like MetaML [49]: a
statically-typed, multi-stage programming language, as an extension of Standard
ML/NJ [1]. MetaML introduced four language constructs:

– the meta-brackets that delay a computation e.g., <40+2>. Evaluation can-
not happen and the computation is considered frozen. These are future-stage
computations, and can be thought of as generated code.

– the escape operator, ~x for some variable x, can be used only inside meta-
brackets—e.g., <40+~x>. This operator permits calculations at the current
stage and splices the result inside the delayed expression for later use. This
allows evaluation steps to take place during program generation, i.e., to vary
the generated code.

– run x forces the evaluation of a meta-bracket expression. Essentially, it com-
piles the computation at run-time and runs it to produce the result.

– lift x allows the conversion of a value—the result of the evaluation of an
expression that does not contain a function—into code.

Consider a function whose body contains a mix of staged and unstaged parts.
What happens when we evaluate that method with an argument list consisting
of some known values and some to-be-supplied at a later stage? MSP evaluates
the unstaged and escaped parts of the program, utilizing information that is
available at the current stage. Then it produces a residual program that is going
to be evaluated at a subsequent stage, when the rest of the parameters are
available. This is similar to a partial evaluation (PE) of the program [11,25],
where the unstaged and escaped parts are evaluated, with staged parts left for
later evaluation. (Staging and partial evaluation are closely related concepts
[24,27]: staging can be seen as instructing a partial evaluator as to what parts



www.manaraa.com

Structured Program Generation Techniques 163

of the program to partially evaluate. Conversely, automatic partial evaluation
can be seen as computing the staging annotations automatically—a step called
binding-time analysis in the PE literature [26].)

Applications of staging include the implementation of domain-specific lan-
guages [18], building compilers from interpreters [48] and the “finally tagless”
approach to building efficient interpreters [6].

We next review staging in more detail via two modern staging
implementations.

BER MetaOCaml. MetaOCaml [5] is a bytecode MSP compiler for OCaml
and BER MetaOCaml [30] is its continuation: a heavily re-factored version of
the MetaOCaml compiler that is more extensible and easier to integrate with
releases of the regular OCaml compiler.4

We illustrate staging via the folklore example of a simple power function,
which has been used for demonstrating partial evaluation (and staging) since at
least 1977 [14]. The power function is defined recursively using the basic method
of exponentiation by squaring. If the exponent is even we square the result of
raising x to half the given power. Otherwise, we reduce the exponent by one and
we multiply the result by x.

let even n = (n mod 2) = 0;;

let square x = x * x;;

let rec power n x =

if n = 0 then 1

else if even n then square (power (n/2) x)

else x * (power (n-1) x);;

We can stage the above function in the MetaOCaml code below to produce
power functions specialized for a certain n—e.g., 5. The staged version of the
function is identical to the original, with the mere addition of staging annota-
tions/constructs. BER MetaOCaml has three of the four MetaML constructs
mentioned earlier: meta-brackets, escape and run. In this example, although n

is statically known, x remains a variable: its value will only be known at a later
evaluation stage.

open Runcode;;

let even n = (n mod 2) = 0;;

let square x = x * x;;

let rec powerS n x =

if n = 0 then .<1>.

else if even n

then .<square .~(powerS (n/2) x)>.

else .<.~x * .~(powerS (n-1) x)>.;;

let power5 = !. .<fun x -> .~(powerS 5 .<x>.)>.;;

4 More historical details about the evolution path of MetaOCaml can be found at “A
brief history of (BER) MetaOCaml”, http://okmij.org/ftp/ML/MetaOCaml.html#
history.

http://okmij.org/ftp/ML/MetaOCaml.html#history
http://okmij.org/ftp/ML/MetaOCaml.html#history
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Note the structure of the above code. The return value of the powerS function
is a staged computation, but it includes a part that can be evaluated, which is the
recursive application. The result (i.e., the code/AST of the result) is spliced back
into the staged computation of the final value, power5: a specialized function, to
be available to later stages.

The operator !. is aliased to Runcode.run—the “run” functionality of
MetaOCaml. This function compiles the staged lambda function, and links it
back as the (specialized) code to be executed in the body of the power5 function.
Simply put, !. transfers our code from the world of representations of functions,
(int -> int) code, to the world of functions, (int -> int).

BER MetaOCaml lets us inspect the code that is generated from our staged
algorithm, using the print code function. The result looks like the following
snippet. As the reader observes, the recursive applications are performed at
compile-time, partially evaluating the function. The result is the residue program
below:

fun x -> x * (square (square (x * 1)))

In the example, the square function is referred from a future-stage compu-
tation using an identifier (square) bound at the present stage. This function is
characterized as cross-stage persistent.

Lightweight Modular Staging. Rompf et al. introduced MSP support in
Scala with Lightweight Modular Staging (LMS) [41]. In LMS, the programmer
has just one staging construct available, in the form of a user-level type. To
indicate that, e.g., an expression does not have a current-stage integer value but
a future-stage integer value, the user changes the declared type of the expres-
sion from Int to Rep[Int]. The unary abstract type constructor Rep[ ] indicates
future-stage values. Types for other values, as well as the exact version of (over-
loaded, current or future stage) operators are inferred.

LMS follows a library-based approach, relying on a special and extensible ver-
sion of the Scala compiler called Scala-Virtualized [39]. In Scala-Virtualized, a
Scala program is represented in terms of function calls, e.g., the control-flow con-
struct do b while (c) is represented by the doWhile(b, c) function call. In this way,
all interesting program statements are mapped to function calls. Even method
calls are represented as infix functions—e.g., x.a(y) as infix a(x,y). This tech-
nique permits operations to be added to the type Rep[T] which also supports every
method of a bare T. Staging power in LMS resembles the following code:

def even (n: Int) = n

def square (x: Rep[Int]) = x * x

def powerS (n : Int, x : Rep[Int]) : Rep[Int] = {

if (n == 0) 1

else if (even(n)) square(powerS(n/2, x))

else x * powerS(n-1, x)

}

def powerTest(x : Rep[Int]) : Rep[Int] = powerS(5, x)
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The input that needs to be designated as future-stage is the base x. This is
the dynamic part of this snippet. All other is static input and will participate
in compile-time evaluation. The type constructor Rep in, e.g., Rep[T] has the
property that all operations on T are applicable to Rep[T] as well and operations
on it will be generated later.

The core difference of LMS from other staging approaches is that binding
times (i.e., stages) are distinguished only by types. The simplicity of the type-
based approach to staging has been a significant boost for LMS, and owes much
to the power of the Scala type system. In LMS applications, regular computa-
tions are routinely switched to staged computations with small, local changes to
declared types.

Practical Notes. The two modern incarnations of staging concepts (BER
MetaOCaml and LMS) integrate several practical enhancements and have seen
significant applications. In both technologies, the user has multiple ways to
generate code. For example, in LMS, CUDA code can be generated instead
of Scala, and in BER MetaOCaml the user can compile directly to native code
instead of the bytecode-generating, Runcode.run function. A notable recent appli-
cation, with versions for both BER MetaOCaml and LMS, is the Strymonas
library [31], which offers highly-optimized streaming functionality (e.g., map,
filter, zip combinators), often over an order-of-magnitude faster than conven-
tional libraries. More generally, staging, using LMS, has been proposed as a key
part of an ambitious development methodology for high performance without
sacrificing abstraction [40]. The methodology has seen several instances of suc-
cessful application. It centers around the creation of domain-specific languages
(DSLs) that obtain high-performance implementations via interpreters staged to
become (effectively) compilers.

4.2 Class Morphing

Class morphing is a technique for writing program generators that take classes
as input and generate new type-safe classes, based on the structure of the input
ones. Morphing has been implemented as MorphJ [16,19–21]: a language that
adds compile-time reflection capabilities to Java. A programmer is able to cap-
ture compile-time patterns and encode them in (meta-)classes.

In MorphJ, a generator Gen taking as input a class C corresponds to a meta-
class Gen parameterized by the input C, similar to Java generics (Gen<C>). From
this perspective, morphing is a strong generalization of generics: for different
values of the type parameters of a class Gen, radically different contents may
be generated, which are the output of the generator. The body of the generator
class then contains regular Java code mixed with MorphJ annotations describing
the reflection (i.e., content-inspection) patterns that guide generation.



www.manaraa.com

166 Y. Smaragdakis et al.

Each pattern is associated with a generative scenario. In the following exam-
ple, the LogMe generator accepts as a parameter a class X and produces a subtype
of X that logs the returns of calls to X’s (non-void) methods:

class LogMe<class X> extends X {

<R,A*>[m] for ( public R m(A) : X.methods )

public R m (A a) {

R result = super.m(a);

System.out.println(result);

return result;

}

}

The second line in the above (meta-)class is a static for-loop over methods of
class X (designated X.methods) that match a pattern, public R m(A), where R and
A are type parameters (A can match any number of type parameters, as indicated
by the A* syntax in its declaration) and m is a name parameter, as indicated by
its distinct declaration syntax ([m]). Other facilities for inspecting the contents
of type parameters (e.g., iterating over fields) are defined similarly in MorphJ.

In another example, a morphed class Listify may statically iterate over all
the methods of another, unknown, type, Subj, pick those that have a single argu-
ment, and offer analogous “lifted” methods: whenever Subj has a method with
argument A, Listify accepts a List<A>. (The implementation of every method in
Listify can then, e.g., iterate over all list elements, and manipulate them using
Subj’s methods.)

class Listify<Subj> {

Subj ref;

Listify(Subj s) {ref = s;}

<R,A>[m] for (public R m(A): Subj.methods)

public R m (List<A> a) {

... /* e.g., call m for all elements */

}

}

Observe here that, in contrast to the previous example, this generator does not
generate a subtype of Subj but an unrelated class that internally uses a Subj

object.
In general, MorphJ offers program transformation capabilities but with mod-

ular type-safety guarantees: type-checking (via MorphJ) the code of Listify

guarantees that all the classes it may produce (for any type Subj) also type-
check (via the plain Java type system).

Type-checking a MorphJ program/generator to guarantee the static safety
of all possible generated classes is based on determining the uniquness of decla-
rations and the validity of references. Uniqueness means that for each generated
declaration of a variable or method in morphed code, the MorphJ type sys-
tem needs to ensure that the declaration does not conflict with others in the
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same scope. Validity means that each reference to an identifier needs to map to
an appropriate, type-correct morphed or pre-existing declaration in the morphed
code. Because of static for-loops, a single identifier in morphed code (e.g., m in
the LogMe class, above) maps to possibly many generated identifiers. Therefore,
the checking of uniquness and validity needs to process the reflection patterns of
static for-loops. This checking is done in MorphJ via the well-known concept of
unification in patterns: for uniqueness, any two declaration-generating patterns
in the same scope should never unify, while for validity, the pattern produc-
ing a reference should be a specialization (i.e., one-way unification) of a pattern
producing a corresponding declaration. The pattern-based type-checking mecha-
nism is mixed with subtyping and conventional type reasoning in the full MorphJ
type checker [20]. The decidability of type-checking also hinges on expressive-
ness limitations placed on the MorphJ program: static for-loops cannot be nested
(although a single for-loop can contain a nested, secondary pattern, with type
variables bound in the primary pattern), and there is only a limited compile-time
conditional statement [19].

The generator programmer has several facilities for influencing the result of
MorphJ type-checking. The simplest one is that of stating subtyping constraints
on type parameters (e.g., C<X extends I>), as in regular Java. Additionally, the
programmer can add explicit static prefixes or suffixes to generated identifiers,
to ensure their uniqueness—the a#b notation designates identifier concatenation
with one of a, b being a constant.

Morphing enables great expressiveness when added to a conventional lan-
guage. In fact, morphing can even simulate inheritance by offering safe delega-
tion over classes. This requires some extra functionality, namely the addition of a
single keyword (subobject) [16]. To see why such an extension might be needed,
consider this example of a logger generator similar to LogMe given above:

class Logger<Subj> {

Subj ref;

Logger(Subj s) {ref = s;} // initialize

<R,A*>[m] for (public R m(A) : Subj.methods)

public R m (A a) {

System.out.println("method" + m.name + "called with arg" + a);

return ref.m(a);

}

}

The morphed methods defined here report when they are called but the
delegation will occur only during external-client calls to methods of Logger<C>,
for some C. Any further calls happening inside the parent are not logged and
thus the morphed class does not behave like a class that would override each
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method with a logged one. The problem is the lack of the late binding property.
To remedy this, the object targeted by delegation must be identified using the
subobject keyword:

class Logger<Subj> {

subobject Subj ref;

... // as before

}

This small change ensures that method calls are late-bound so that a gener-
ated class, Logger<C> behaves like a true subclass of the original, C. However,
the addition of subobjects has significant repercussions. For instance, two refer-
ences to the same subobject (i.e., aliases), via different access paths can behave
differently [16].

4.3 Shortcomings and More Power

Staging and morphing are broad approaches that can ensure statically-safe pro-
gram generation, by focusing on specific (albeit broad) classes of program gen-
eration tasks. For more power, there have been several approaches that allow
arbitrary program generation constructs, yet impose a discipline (based on type-
checking or other analysis) over how these constructs are composed. We see some
interesting such mechanisms next, noting the differences from staging and mor-
phing, both in style and in expressive power.

SafeGen. SafeGen [22] is a meta-programming language for writing generators
of Java code that are statically guaranteed to produce type-safe code.

The SafeGen language targets generators that can be written as transforma-
tions using reflection, i.e., inspection of the structure of existing code. SafeGen
can thus be used for tasks similar to those that class morphing targets. SafeGen
handles generated names and can guarantee that generated definitions have fresh
names, not clashing with existing ones.

Compared to multi-stage languages and class morphing, SafeGen is more
expressive in principle, as it permits the specification of a generator via arbitrary
constructs. For example, it permits generators that generate and use names more
freely than the scoping of multi-stage languages allows; it also enables generators
that test arbitrary logic formulas over reflective properties, compared to the more
constrained way of handling the same properties in morphing.

However, the type system of SafeGen is undecidable and it depends on an
automated theorem prover for discharging proof goals for common cases. This
means that more generators can be written and proved correct in SafeGen, but
the user can also write generators that SafeGen cannot prove correct automati-
cally and will report a “possible error”.
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A simple example in SafeGen (that could also be written using morphing) is
that of a generator that takes a Java class as input and produces a Java interface
of void methods that have the same name as the methods in the input class:

#defgen MakeInterface (Class c) {

interface I { #foreach(Method m : MethodOf(m,c)) { void #[m] (); } }

}

In the code above, #defgen declares the generator, the #foreach syntax iterates
over the methods of the input class, and #[m] uses the name of the meta-variable
m in the generated code. This generator may seem too simple, but is buggy: since
Java permits method overloading, two methods of the input class can have the
same name and thus the generator may generate an interface with duplicate
method declarations. SafeGen catches this error as it cannot prove that the
generated output will always be type-safe.

A working SafeGen example is that of a generic delegator, which was also
given in Sect. 4.2, using morphing:

#defgen MakeDelegator ( input(Class c) => !Abstract(c) ) {

#foreach( Class c : input(c) ) {

public class Delegator extends #[c] {

#foreach(Method m : MethodOf(m, c) & !Private(m)) {

#[m.Modifiers] #[m.Type] #[m] ( #[m.Formals] ) {

return super.#[m](#[m.ArgNames]);

} } } } }

Although this is essentially a morphing example, the flavor of operators offers
a glimpse of actual program manipulation with SafeGen. Static reflective iter-
ation is supported, as well as arbitrary generation-time nesting of primitives
(e.g., nesting of #foreach loops), compile-time conditionals, identifier manipula-
tion, etc. The type system of the target language is fully encoded in input for
the automated theorem prover that SafeGen employs as part of its checking.
Part of this input is constant and encodes assumptions of the language (e.g.,
the single-inheritance nature of Java), while another part is custom-generated
by translation of the generator specification, to encode the structure of the gen-
erated code. Finally, the generator specification is used to produce a logical
sentence that establishes the generated program’s well-formedness for unknown
generator inputs. The automated theorem prover then attempts to prove this
sentence.

In all, despite its power, the SafeGen approach suffers from lack of program-
mer control, due to the undecidable nature of the checking process. It is not easy
to know when a generator fails to type-check due to a bug vs. due to limitations
in automated formal reasoning.

Ur. Instead of translating a generator specification into a logical sentence for an
automated theorem prover (as in SafeGen), one can attempt to enlist a powerful
type system that can simultaneously express conventional type-level properties
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of a program and the logical structure of a generator under unknown inputs. This
typically entails the use of dependent types : types that can use program expres-
sions as terms. An advantage of this approach is that the user can improve the
theorem proving ability of the system by just applying better type annotations
(though these can be arbitrarily complex).

The Ur system [7] for program generation adopts this principle. Ur permits
the declaration of generators that can be generic on their input while still produc-
ing only well-formed output. Ur’s metaprogramming model is based on type-level
computation and type-level records, following a functional programming style.
The input of a generator defined in Ur can contain records of values or types and
such records can be taken apart or built in the body of the generator, in a safe
way, using functional programming machinery (e.g., higher-order functions such
as map and fold). The type system keeps track of the origin and manipulation
structure of records and values, much like the SafeGen type system, earlier, kept
track of the patterns used to produce definitions and references to identifiers.

Targeting pragmatic applications and ease of use, Ur is using a restricted
form of dependent types, combined with ad-hoc logic for common cases (such as
special provers for the inference of intermediate proofs of a particular shape or
automatic code transformations, such as map fusion). The safety guarantees of
Ur assume that the writer of the generator dedicates some effort in writing type
annotations and reasoning about output safety using the record-specific features
of the language. On the other hand, the user of the generator can be spared this
effort as Ur’s heuristics fill in many holes, resulting in simple-to-use generators.

Although Ur offers type safety based on its records reasoning, the data for-
mat output by a generator may be subject to additional well-formedness con-
straints, such as the need for sanitization in HTML and SQL to address code
injection attacks. In the case of HTML and SQL, Ur has been extended with addi-
tional functionality that guarantees this well-formedness, resulting in Ur/Web, a
domain-specific language for web application development, implemented on top
of Ur as a special library with extra rules for parsing and optimization [7,9]. Other
generated data formats and their needs would need a similar extension of Ur.

As an example, consider a dynamic webpage that defines a generic sum func-
tion that sums an arbitrary list (record) of integers and then calls it to sum three
lists of integers (one of them being the empty list):5

fun sum [fs ::: {Unit}] (fl : folder fs) (x : $(mapU int fs)) =

@foldUR [int] [fn _ => int]

(fn [nm :: Name] [rest :: {Unit}] [[nm] ~ rest] n acc => n + acc)

0 fl x

fun main () = return <xml><body>

{[sum {}]}<br/>

{[sum {A = 0, B = 1}]}<br/>

{[sum {C = 2, D = 3, E = 4}]}

</body></xml>

5 The two pieces of code here are contained in Ur/Web distribution version 20150520
as demos sum and tcSum.



www.manaraa.com

Structured Program Generation Techniques 171

In this example, main is the entry point of the dynamic web page, which calls sum

three times. (The nm and ~ syntax found in the body of sum is part of the Ur/Web
support for record manipulation.) The results of sum calls are then embedded
in well-formed XML. The sum function is declared using a fold, as in standard
functional programming practice. The interesting part is the ability to iterate
over the (unknown) fields of any record and to modularly assert that the iteration
(i.e., sum) is well-defined, no matter what record is supplied as input. What sets
Ur/Web apart from other Web frameworks is the amount of type information
inferred: only x is explicitly given in the calls to the function; everything else
is inferred. In particular, Ur/Web manages to infer the folding mechanism used
(the folder). While in principle the type inference of Ur/Web is not complete, in
practice it addresses many common cases encountered during Web development.

The example above was the definition of summing for integer records. The
following example shows how to define a generic sum in a similar fashion:

fun sum [t] (_: num t) [fs ::: {Unit}] (fl: folder fs) (x: $(mapU t fs)) =

@foldUR [t] [fn _ => t]

(fn [nm :: Name] [rest :: {Unit}] [[nm] ~ rest] n acc => n + acc)

zero fl x

fun main () = return <xml><body>

{[sum {A = 0, B = 1}]}<br/>

{[sum {C = 2.1, D = 3.2, E = 4.3}]}

</body></xml>

This example uses type classes, another feature of functional programming [55],
to define sum on number-like data, i.e., values of types in the num type class. In
this way, sum can be applied to records of integers and floats, with the same ease
of development (inference) as before.

4.4 Other Techniques

There are several other techniques that are close relatives of the ones we discussed
in the previous sections. We mention some of them for completeness and as
starting points for further study.

The Genoupe system [13,34] allows expressing generators in an extended
version of C#, using constructs similar to the static #foreach of SafeGen. Like
SafeGen, the system allows arbitrary expressiveness (e.g., nesting of static for
loops, static conditionals, and more) but, in contrast to SafeGen, does not encode
the full complexity of the meta type-safety question in its type-checking. In
SafeGen, this complexity mandated the use of a rich logic and an automated
theorem prover. In contrast, the Genoupe checking is done through standard
type-system techniques and is even more restrictive than MorphJ’s. For instance,
there is no way to generate declarations under a set of conditions and generate
references to them under stricter conditions—the type system treats expressions
in static constructs as opaque values that can only be compared for equality.
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The compile-time reflection (CTR) facility [15] is a close relative of morphing,
yet presents a different tradeoff in the design space. It introduces the concept of
a self-contained transformation (instead of merging meta-programming features
inside generic classes, as in MorphJ) and sacrifices some modular type safety:
the system catches invalid references, though not duplicate definitions. The work
has been recently extended with addition of features from morphing, and applied
to several different program elements, such as pattern-based traits and reflection
at the statement level [36,37].

In recent work on active libraries, Servetto and Zucca propose MetaFJig*,
a rich meta-language for safe reflection with nested class support and compo-
sition operators [42]. These new features do not have a counterpart in classical
morphing. In Sect. 4.5 we discuss interesting research avenues that incorporate
such features.

Concepts of static safety have also arisen in the context of refactoring trans-
formations, with work by Steimann and von Pilgrim [47]. An interesting aspect
of this work is that it treats the program as a constant (i.e., does not guaran-
tee the safety of a refactoring for all possible input programs) yet attempts to
solve a hard problem—namely, to compute the constraints that need to hold in
the post-transformation state of the program for the refactoring to have been
semantics-preserving.

Recent work in the literature has focused on offering static safety guaran-
tees for macro systems and other syntactic extension mechanisms. Lorenzen and
Erdweg [33] propose a syntactic language extension facility that offers type-based
syntax desugaring (allowing the desugaring specifications to employ type infor-
mation) while guaranteeing automatically that desugarings only generate well-
typed code. Chlipala’s Bedrock system [8] is a relative of the Ur approach of
Sect. 4.3. Bedrock introduces “certified low-level macros”, for an assembly-level
target language. These are highly expressive macros, allowing the implementa-
tion of a full C-like language stack. However, safety guarantees carry the cost
of some manual verification effort by the programmer. The host language in
Bedrock is the functional programming language of the Coq proof assistant [3].
In this setting, safety properties are also low level, guaranteeing the absence of
invalid jumps or bad memory reads/writes in the resulting machine code.

4.5 Remarks and Future

The techniques we saw in the previous sections cover several points in the space
of expressiveness/static safety tradeoffs. Perhaps the techniques with the easiest
path to mainstream adoption are the ones that enforce clear, up-front expressive-
ness restrictions, yet support general as well as popular program generation pat-
terns. Staging and morphing (Sects. 4.1 and 4.2) are the clearest such instances.
Both of them have significant expressiveness limitations and addressing such
limitations is the topic of active research.
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Staging requires a one-to-one mapping between code fragments of the genera-
tor and the generated code. In multi-stage languages, one cannot escape an identi-
fier in a binding position. For instance, it is not possible to generate the definition
of a variable whose name will be determined at generator run-time, as in:

emit( ‘[ int #name; ] );

In a recent position paper [23], Inoue et al. argue that the “next stage of
staging” will need to lift constructs to the type level. Allowing the generation of
binding instances with variable names (“splicing binders”) is identified as a major
challenge. This is indeed the focus of morphing mechanisms: reasoning about
generated declarations and their references, without knowing what the declared
names will be until generator run-time. Therefore, an interesting direction for
both morphing and staging are to combine forces, in language designs that enable
meta type-safety for some of the most common kinds of program generation.

At the same time, morphing is evolving to acquire further functionality, for
reflecting over classes. Recent work [4] presents universal morphing : an extension
of morphing to permit patterns iterating over types. This ability captures mor-
phing functionality at a much larger granularity than before, and enables several
interesting programming abstractions. Examples include iterating over all super-
types of a class, over all its nested classes, over all classes in a given set, etc.
Such static iteration can generate new classes that subclass or reference input
classes, emulate a subset of their supertypes while adding new ones, morph over
their members (via standard morphing patterns), etc. This enables, for instance,
highly generic mixin layers [44]: parametric components containing classes that
each inherit from a corresponding class in an unknown super-component sup-
plied as a parameter. The ability to iterate over classes can also be used to
support type constructor polymorphism and higher-kinded types, as in the work
of Moors et al. [38].

In Sect. 4.4 we mentioned MetaFJig* as a source of features that are still not
satisfactorily handled by other meta-programming systems. MetaFJig* defines
a language that supports reflection over classes: the user can write reflective
code that generates expressions of a “class” type (i.e., class definitions are seen
as expressions) and there are operators over classes (such as sum). Universal
morphing can also support versions of these concepts: it supports safe reflection
over nested classes, and class operators can be encoded through morphing. For
an example of this encoding, the sum operator can be defined as a class Sum<A,B>
that contains methods of both A and B, guarantees the absence of method name
clashes, and supports recursive summing.

5 Conclusions

Programming language design evolves with the invention of new kinds of abstrac-
tion. Procedural abstraction was introduced in the 50 s and 60 s and ushered in
the era of structured programming languages. Type abstraction or polymorphism,
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in the 70 s and 80s, brought about modern functional and object-oriented lan-
guages. These advances were foreshadowed by program generation techniques
that attempted to achieve the same expressiveness benefits with much lower-
level concepts and no safety guarantees. Before there were structured procedures,
there were macros that achieved similar benefits in many cases. Before there was
polymorphism, there were generators that produced isomorphic code for different
types, or copied one type’s definitions into another. Generators are inevitable
every time existing abstraction mechanisms are not enough. Conversely, get-
ting generators to support an abstraction pattern with full static safety means
that they are no longer “generators”: it becomes a mere implementation detail
whether a program is indeed generated as part of supporting an abstraction.

Therefore, the question of how to make generators statically type safe (i.e.,
statically checkable for all possible, unknown, inputs) is central to the future
of programming language design. A technique from this solution space may be
behind the next major evolution of programming languages. For instance, the
morphing approach exemplifies structural abstraction: code can be agnostic of
the structure of other program elements, yet interface with them correctly. This
matches the widespread low-level practice of generating code via reflecting over
existing classes or modules.

Given the importance and appeal of the underlying problem, it is no sur-
prise that the field is active and diverse. This briefing gave an overview from a
viewpoint that we hope illuminates rather different and typically disconnected
approaches.
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Abstract. Refactoring is the process of changing a program in such a
way that its design improves with respect to some specific goal, while
its observable behaviour remains the same. Trivially, the latter includes
the preservation of the program’s well-formedness, since arguably, a mal-
formed program has no behaviour to be preserved.

While the problem of refactoring is easily stated, casting it into fully
functional refactoring tools for contemporary programming languages
is surprisingly hard. In fact, most refactoring tools in use today can-
not even guarantee to preserve well-formedness, let alone behaviour,
not even for some of the most basic refactorings (such as Rename or
Pull Up Member).

In Part I of this briefing, I will report on some of the most promising
techniques for implementing correct refactoring tools. Common to these
techniques is that they give up the notion of behaviour preservation in
favour of the more basic (and less demanding) notion of invariant preser-
vation: to be correct, a refactoring tool must not accidentally change the
binding of names, the overriding of methods, the synchronization on a
monitor, etc. Preservation of well-formedness is then the preservation of
invariants relating to well-formedness.

With invariant preservation tackled, it is straightforward to trans-
fer refactoring technology to other programming tools, including tools
for automatic repair and completion of programs, mutation testing, and
program generation. How these are related to refactoring tools, and how
they can be developed in concert, I will propose in Part II of this briefing.

Part I: Refactoring Tools

The term refactoring refers to at least:

– a discipline (e.g., when it is used as the label of a session at a conference),
– an activity (when somebody is practicing that discipline),
– the result of such an activity (e.g., one program is said to be a refactoring of

another),
– a pattern of such an activity (for instance, an element of a refactoring cata-

logue; e.g., Rename Field),
– an instance of such a pattern (when the pattern is applied to concrete code;

e.g., “after a Rename Field refactoring”); and
– a programming tool (as in “Which refactorings does your IDE come with?”).

c© Springer International Publishing AG 2017
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In Part I of this briefing, I will focus on refactoring tools, and will use this term
throughout for disambiguation from all other meanings of refactoring. That said,
I will start with some observations and remarks on refactoring in general.

1 Origins of Refactoring

Refactoring as a tool-supported discipline goes back to the independent works
of William Griswold (with the late David Notkin; see, e.g., [19]), and of William
Opdyke (with Ralph Johnson; see, e.g., [30]). Although Griswold’s PhD thesis
on program restructuring ([18], from 1991) pre-dates Opdyke’s ([29], from 1992),
the latter is usually cited as the origin of refactoring, not least because it has
the term in its title (another reason may be that with C++, Opdyke addressed
a more widespread language than Griswold, who addressed Scheme). Although
Opdyke reports that the term was coined some time earlier, it wasn’t before
the implementation of the Smalltalk refactoring browser [34], the adoption of
refactoring as a core practice in XP [4], and Fowler’s widely recognized book
[12] that it became commonplace.

Refactoring as a manual activity is probably as old as programming itself [26].
Especially in the old days, when computing resources where scarce, programs
had to be restructured regularly so as to reduce memory usage (both program
and data) and execution time. In these days, instruction sets and programs
were small, and development environments consisted largely of brains, pens, and
paper; refactoring was an inherent part of coding, which required the code to be
concise enough to meet the tight space requirements of the machine.

In later years, the task of making the most out of the given hardware
resources was shifted from programmers to compilers, specifically to optimiz-
ing ones. Refactoring shares with compiler optimization the goal (and problem!)
of behaviour preservation. However, compiler optimizations are often local and
can be switched off. The latter is a concession to the state-of-the-art, namely
that guarantees of behaviour preservation are hard to give. Refactorings, on the
other hand, are often non-local; in fact, while coding along, the non-local changes
disrupt the workflow most, so that their automation promises to be the most
rewarding.

2 The Current Refactoring Crisis

Following its original conception, refactoring is today still mostly perceived as
improving the design of a program while preserving its observable behaviour.
Naturally, this definition is challenged by two questions:

1. What does improving the design mean?
2. What does preserving the observable behaviour mean?

While both questions appear natural, if not mandatory, to ask in purely academic
circles, the current mindset of the refactoring community, a sound mixture of
researchers and practitioners, is perhaps best characterized by a third one:

3. Who cares?
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2.1 The Elusiveness of Design Improvement

Many refactorings presented in Fowler’s catalogue [12] are complemented
by reverse refactorings: Extract Method — Inline Method; Pull Up

Field — Push Down Field; Replace Inheritance with Delegation —
Replace Delegation with Inheritance, to name a few. This fact alone
suggests that improving design is not in the nature of specific refactoring pat-
terns: what results in good design in one context can result in bad design in
another. Furthermore, since refactoring tools today usually tackle only fairly
small changes from which bigger refactorings can be manually composed, each
application of a refactoring tool by itself may result in unimproved design: as
with solving Rubik’s cube, intermediate steps may let the program look dramat-
ically worse temporarily.

A more neutral goal of refactoring is therefore to make subsequent changes
easier. However, even this goal is not universal: Refactorings introducing paral-
lelization, for instance, do not target at better changeability, but at improved
utilization of the underlying hardware (see, e.g., [10]; but note that this could
be considered an optimization rather than a refactoring). Also, it is conceivable
that refactoring is performed for obfuscation, i.e., a design that makes (informed)
code changes largely impossible (which presents an improved design if unchange-
ability is the goal).

2.2 The Elusiveness of Behaviour Preservation

An answer to the second above question is often given as “the program still
compiles and passes the same tests the program passed before the refactoring”
(see, e.g., [12]). While pragmatic, this answer merely suggests a post-hoc check
of whether some concrete changes actually represent a refactoring; for refactor-
ing tool builders, it translates to “for all possible applications to all possible
programs with all possible test suites, the resulting program must still compile
and pass the tests”. Surely, this cannot be proven experimentally1, but would
require some abstract, formal argument, which is however hard to give. In prac-
tice, therefore, tool builders rely on testing their tools, and on users submitting
bug reports.

Even with testing in place, the notion of behaviour that is to be preserved by
refactoring is not unchallenged. For instance, the refactoring Replace Condi-

tional with Polymorphism [12] may adversely affect program performance
(by replacing explicit branching with dynamic dispatch), and this deteriorated
performance may mean an intolerable change of behaviour in certain contexts.
While such a deterioration may be detected by test cases (leading to a sub-
sequent rejection of the refactoring), it cannot lead to a general abandonment
of Replace Conditional with Polymorphism as a refactoring, as other
1 I have gathered some first-hand experience with this, which drove me to lamenting

“whenever we believed that we had made correctness of the refactoring plausible,
testing it on a new project revealed a new problem we had not previously thought
of” [24].
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users may not conceive of slower performance as a behavioural change. On the
other hand, a change of performance may be the very purpose of a refactoring:
for instance, when refactoring for parallelization, a better user experience, and
hence externally perceivable behaviour, may be the very goal. While one could
argue again that such a change represents an optimization, this does not seem
enough to expel corresponding work from the refactoring realm.

2.3 Ignoring the Unresolved Correctness Problem

Although correctness of refactoring tools has been a concern from the very begin-
ning of the discipline (see, e.g., [18,29]), it seems that the builders of contempo-
rary refactoring tools have surrendered to the complexity of the problems (see,
e.g., [15,39,40]; Sect. 4 will give a concrete taste of the complexity of the prob-
lems one may encounter). While this has sparked off some research on how the
correctness problems can be tackled (see, e.g., [3,5,13,47]; also, Sect. 6 is devoted
to this entirely), I also observe that the refactoring community has some sympa-
thy for downplaying the correctness problems (see, e.g., [7]), focusing on other
topics instead. Particularly popular seem empirical investigations exploring the
use of refactoring tools (mostly suggesting that the correctness problem is not
one; see, e.g., [28,50]); other work focuses on increasing the utility of existing
(even though buggy) refactoring tools, for instance by automatically discovering
manual refactoring activities and completing them with tool support [11,14], or
by automatically synthesizing larger refactorings from smaller ones [33]. Since
the defectiveness of the underlying refactoring tools is not ironed out by auto-
matically applying or combining them, the tools assembled from them are also
defective. This however is almost consistently ignored.

2.4 The Easy Way Out: Liberation from Academic Chains

The more popular refactoring is becoming, the more its definition is being chal-
lenged (with arguments partly given above). Specifically, practitioners more and
more suggest that refactoring amounts to automated program change, with
behaviour preservation and design improvement, if at all desired, being left to
the responsibility of the user. This culminates in the view that the laxer the pre-
conditions of a refactoring tool, the higher its utility, even if this means that the
tool introduces errors that then need to be fixed manually. Given this mindset,
it may not be so surprising that sentences like “Even though our approach is
neither sound, nor complete, it is still useful.” (cited from a refactoring paper
presented at a highly respected conference) make it into the academic literature.

I do not condemn this departure from the refactoring ideal — whichever tool
works best for a programmer is good (although I maintain that the question,
what works best for the programmer?, cannot be decided by the programmer
alone, but must also be judged by the quality of the result; see [7] for a recent
discussion). However, I grant myself the freedom of pursuing a more scholarly
perspective here (which includes the liberty to choose my challenges indepen-
dently from the purported programming practice), and to uphold the original
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definition of refactoring. I do however concede that whether or not design is
actually improved is not a part of the definition of a refactoring (more precisely:
a refactoring pattern), only of its application (an instance of the pattern).

3 The Generic Nature of Refactoring Tools

Following the school of Opdyke and Johnson [29,30], implementing a refactoring
tool requires

1. implementing a check of the preconditions of the refactoring and
2. implementing a sequence of changes, also called the mechanics [12] of the

refactoring.

Postconditions are usually considered dispensable by this school, unless refac-
torings are chained, in which case postconditions are to provide guarantees that
the next refactoring’s preconditions are met by the outcome of the present one
[35]. Of course, this view ignores that every refactoring has a purpose, which is
naturally reflected in its postcondition. A more pragmatic argument for dismiss-
ing the need for postconditions is that they follow from the preconditions and
the mechanics of the refactorings and hence are redundant; this of course ignores
that the mechanics could be flawed (see above), or the preconditions too weak.
Both are however not uncommon for today’s refactoring tools.

For this briefing, I will adopt a more fundamental viewpoint and regard refac-
toring tools as metaprograms, specifically as programs that implement source-
to-source program transformations [18,21,27]. Metaprograms are programs and
hence are specified using preconditions and postconditions. While this may seem
overly academic, the reader will learn below that the pre- and postconditions of
refactoring tools are, to a large extent, generic so that identifying and expressing
them for a specific tool should not present too much of an effort. At the same
time, the reader will (hopefully) join me in appreciating the ready availability of
pre- and postconditions for refactoring tools as a (rare) occasion of being able
to derive an implementation directly from its specification.

3.1 Generic Pre- and Postconditions

A generic precondition of all refactoring tools is that input programs must be
well-formed.2 Generic postconditions are that

2 Practitioners may find this precondition too strong. Indeed, it seems that it could
be relaxed to requiring well-formedness only for the parts of the program that are in
some way connected to the intended refactoring. However, it seems difficult, if not
impossible, to decide if a malformed part of a program is connected to a refactoring.
For example, what if the refactoring makes the formerly malformed part well-formed,
for instance by renaming a declared element so that a formerly unbound reference
now binds to this element?
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– the refactored program is still well-formed, that
– it behaves the same, and that
– the program either exhibits at least the changes immediately associated with

the refactoring (the refactoring intent), or remains unchanged.

3.2 Specific Pre- and Postconditions

Beyond the generic preconditions, preconditions specific to a concrete refactoring
tool are to protect the tool from input (programs to be refactored and user-
supplied parameters of the refactoring) that it cannot handle, either because the
refactoring is undefined for them, or because of unresolved technical challenges
(including the impossibility to guarantee behaviour preservation, if this escapes
the current capabilities of static program analyses). If preconditions are violated,
the refactoring tool should leave the program unchanged, and report the violation
to the user, who can then try to prepare the program manually (by performing
required changes, arguably refactorings) for successful tool application.

The postconditions specific to a concrete refactoring assert that the changes
associated with the refactoring are actually seen in the refactored program. Basi-
cally, they have the form “the refactored program shall exhibit property X”,
where X expresses a change (such as a change in the type hierarchy etc.). Some
(if not most) refactorings require additional changes to be made, changes that
complement the refactoring intent to restore the program’s well-formedness or
its behaviour (see Sects. 4.3 and 6 for examples). These changes are typically not
part of the specific postconditions; indeed, computing them is the hard part of
refactoring tool implementation. However, as we will see, the required additional
changes can sometimes be derived from the (generic and specific) postconditions.

3.3 Generic Refactoring Invariants

That a program must be well-formed before and after a refactoring, and that
the behaviour must remain the same (conditions included in the generic pre-
and postconditions of a refactoring tool) can be viewed as generic invariants. If
behaviour is specified in terms of a test suite, preservation of these invariants
is easily checked: by running the compiler and test suite before and after the
refactoring.

If however a test suite sufficient for checking behaviour preservation is
unavailable, or if behaviour preservation is to be specified independently of any
given program, checking invariant preservation requires the following generic
procedure:

1. check well-formedness
2. extract the behaviour-critical invariants
3. perform refactoring
4. check well-formedness
5. check extracted invariants
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Here, it is understood that the behaviour-critical invariants extracted from the
program before the refactoring (Step 2) hold at the time of extraction. A failure
of any the refactoring invariants after a refactoring can be interpreted as the
violation of specific preconditions, which are however not explicitly specified
(see Sect. 6.1 for a brief discussion of the pros and cons of this). This observation
(limited to the behaviour-critical invariants) was already made by Max Schäfer
[36], and also by Jeffrey Overbye [31].

4 Why Building Refactoring Tools Is Hard: A Case Study

In his refactoring book [12], Fowler provides the following synopsis for the
Replace Inheritance with Delegation refactoring:

A subclass uses only part of a superclasses interface
or does not want to inherit data.

Create a field for the superclass, adjust methods to delegate to the superclass,
and remove the subclassing.

The prototypical example of a class one might want to rid of its superclass
using Replace Inheritance with Delegation is that of Stack extending
Vector:

class Stack
extends Vector {

void push(Object o) {
add(o);

}
...

}

⇒

class Stack {
Vector elems = new Vector();
void push(Object o) {

elems.add(o);
}
...

}
Fowler prescribes the following mechanics for this refactoring [12]:

1. Create a field in the subclass that refers to an instance of the superclass.
Initialize it to this.

2. Change each method defined in the subclass to use the delegate field. Compile
and test after changing each method.

3. Remove the subclass declaration and replace the delegate assignment with an
assignment to a new object.

4. For each superclass method used by a client, add a simple delegating method.
5. Compile and test.

What the prescription does not say is what to do if the program does not compile
during step 2 or 5, or if any of the test cases fail. A yielding reaction would be to
undo all changes and give up on the refactoring (assuming that the refactoring was
not intended for the given case or,more formally, that the programdid notmeet the
preconditions of the intended refactoring); apersisting reactionwouldbe tofindout
the source of the problems, and work around them (suggesting that the mechanics
failed to cover the special conditions — in the community often marginalized as
“corner cases” — that led to the failure). Either way, a user of this refactoring, and
even more so a tool builder, is left alone with learning its particulars.
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Fig. 1. Programs for which Fowler’s Replace Inheritance with Delegation [12]
does not work out-of-the box.

4.1 The Precondition Surprise

Although Fowler’s treatise of Replace Inheritance with Delegation does
not mention preconditions, it gives a few clues as to the refactoring’s applica-
bility. A trivial precondition that can be derived from Step 3 of its mechanics
given above is that the inheriting class (the subclass to which the refactoring
is to be applied) has a superclass other than Object, since in Java at least,
every class implicitly inherits from Object. Other, slightly less obvious precon-
ditions are that the superclass must be instantiable (i.e., not abstract) and that
the superclass constructors (called from the subclass either implicitly or using
super) must be accessible from the subclass even when it is no longer a subclass
(Fig. 1(a)); also suggested by Step 3. Steps 2 and 3 together suggest a similar
requirement: replacing this with the delegate field means that the members
accessed via this field must still be accessible after the inheritance has been
removed. This is not the case, for instance, if superclass and subclass reside in
different packages and superclass members are declared protected (Fig. 1(a)).
Not mentioned in Fowler’s tractate is that the program must not require
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assignment compatibility between the subclass and the superclass; specifically,
no instance of the (former) subclass must occur where an instance of the (former)
superclass is expected.3 While one could argue that removing subclassing, and
with it subtyping, is the very purpose of the refactoring (which therefore cannot
be applied when subtyping is required), the situation is actually less clear-cut
for instance when the superclass implements interfaces (including marker inter-
faces) the subclass no longer implements (Fig. 1(b)). Also, subclassing cannot be
removed without breaking the program if the subclass inherits from a class with
special semantics, on which the program relies (Fig. 1(c)). Last but not least,
the refactoring will fail if clients access fields (rather than methods as in Step
4) of the (former) superclass through the (former) subclass (Fig. 1(d)). This is
so since in Java at least, field access cannot be delegated. For this, it would be
necessary to introduce accessor methods for the fields first (the Encapsulate

Field refactoring), and to let the clients use them.
While violations of the above preconditions of the Replace Inheritance

with Delegation refactoring are unveiled by the error reports of the compiler
(if only after the fact; see Sect. 3.3 for how this relates to invariant preservation),
the really nasty preconditions are discovered only by testing behaviour preserva-
tion. One is that the refactoring does not replace inheritance with delegation (as
it claims), but with forwarding. For true delegation, it would be necessary that
the use of this in a delegated method call refers back to this in the delegat-
ing method (the delegator), whereas with forwarding, this refers to the object
being delegated to. This is a problem when the (fake) delegation calls a method
on this that used to be overridden in the (former) subclass, as exemplified
in Fig. 1(e) (using a home-brew implementation of Thread). This overriding,
and with it the dynamic dispatching to the subclass, are however gone, usually
resulting in changed behaviour.

Another hard to discover precondition arises in the context of multi-
threading. In Java, synchronized method calls are guarded by a monitor asso-
ciated with the receiver of the method call. After application of the Replace

Inheritance with Delegation refactoring, however, invocations of meth-
ods formerly inherited are now “delegated” (actually: forwarded) to a different
object, which has a different monitor. Synchronization may therefore fail, as in
the case of Fig. 1(f).

One might argue that both of the above are corner cases that will rarely
occur in practice, so that their neglect can be tolerated. However, it is somewhat
assuming to claim that certain constructions are or will be rarely used4; at the
same time, no one can predict the harm their neglect may cause.

3 This includes instanceof tests, which will become ill-typed.
4 In a study conducted by the author, dynamic dispatching affected 41%, and syn-

chronization affected 3.5% of all attempted applications of Replace Inheritance

with Delegation [24].
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4.2 The Mechanics Adventure

While Fowler leaves the preconditions of Replace Inheritance with Del-

egation mostly for the discovery by others, he leaves only little doubt as to
its mechanics, i.e., what needs to be done to perform the refactoring. The only
pitfall is hidden in Step 4, which requires that all method calls from clients
of the (formerly) inheriting class are identified (so that the required delegating
methods can be introduced). Precise identification of the calls is crucial to the
success of the refactoring: adding delegating methods that are never called by
clients counteracts the very purpose of the refactoring (the deflation of the class
interface), while missing out required delegating methods will lead to compile
errors. Unfortunately, an analysis of the class members required by the class’s
clients is only seemingly simple; factually, it requires the type analysis under-
lying the Extract Interface refactoring [48], which is not trivial. Without
such an analysis at hand, performing the refactoring will be a trial and error
adventure (delegating methods are added until all type errors are resolved).

Generally, to keep the mechanics of a refactoring simple, the definition of
strong preconditions seems a good idea. However, as suggested by the precondi-
tions of Replace Inheritance with Delegation derived from the examples
of Fig. 1, it may render the refactoring unusable in too many cases, making the
user perform preparatory refactorings required for doing the refactoring any-
how. Figuring out precisely which preparatory refactorings are required is an
adventure in its own right, in particular when considering that each preparatory
refactoring may suffer from the same problem recursively.

4.3 The Tool User’s Dream: Relaxed Preconditions

Given the above, rather long list of preconditions for Replace Inheritance

with Delegation, it is indeed questionable whether a refactoring tool requiring
them all will be useful in practice, or will deny its service on too many occasions5.
Also, given that at least some of the precondition violations seem easy to work
around (for instance, access modifiers can be adjusted, accessor methods can be
introduced), it is foreseeable that users will ask for a refactoring tool that can fix
these issues by itself, rather than suggest corresponding manual changes (see [50]
for some evidence of this). However, as other work has shown, changing access
modifiers consistently is not as easy as it may seem, and in Java can even lead to
changes of behaviour (by changing binding) [45]. Also, setter invocations cannot
generally replace for field assignments, so that both changes are rather complex
refactorings by themselves. As for the remaining preconditions: Even if there are
ways to do away with them, as we will see below this takes far more than can be
straightforwardly handled in an imperative (as opposed to declarative) fashion,
that is, through a sequence of steps (“mechanics”). If building correct refactoring
tools is hard, relaxing their preconditions is harder.

5 In the same study [24], they prevented 84% of all naive refactoring applications in
four subject programs.
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4.4 The Tool Builder’s Nightmare: Evolving Languages

While creating correct refactoring tools for programming languages as complex
as Java or C# is already hard, evolving them to keep up with the further devel-
opment of these languages is a nightmare. This is not only so because, after the
compiler has been updated, the refactoring tools need to follow to accommodate
the same set of new language features, but also because it raises expectations
regarding tool support for migrating now legacy programs to the new language
version. For instance, the introduction of generics to Java not only broke literally
all type-related refactorings, it also led to the formulation of new refactorings
introducing generics to legacy code [48]. Not surprisingly, developing these tools
occupied some of the brightest minds in our field, and still left us with tools that
are, strictly speaking, neither sound nor complete.6

5 Current Refactoring Practice and Research Challenge

Given the hardness of the refactoring problems exposed by the above case study,
and given that most contemporary refactoring tools have not found good means
of dealing with these problems, refactoring practice today often follows the pat-
tern

1. Perform the refactoring as specified (using a tool, if available).
2. If the refactored program exhibits compile errors or changed behaviour,

(a) either undo the refactoring or
(b) perform corrective changes compensating for shortcomings in the mechan-

ics of the refactoring.

In case 2(a), violation of the generic postconditions (Sect. 3.1) and assuming that
the performed mechanics are correct suggest that the preconditions of the refac-
toring have not been met. In this case, the user can try to prepare the program
manually for the refactoring. If the preconditions are not explicitly specified (as
in Fowler’s above specification of Replace Inheritance with Delegation),
the reported compile errors or failed test cases may provide some hints for the
necessary preparation; in any case, they are the sole instance deciding that the
program is ready for the refactoring as implemented by its mechanics.

In case 2(b), the task of complementing the mechanically performed refac-
toring with the required additional changes is guided by the compiler and test
suite, which serve as oracles of manual task completion. If the refactoring user is
happy with this situation, one may indeed suggest that preconditions are relaxed
as much as possible — as long as the resulting program can be easily fixed, it
does not matter whether violations of the generic postconditions are due to vio-
lated preconditions or to shortcomings in the specification of the mechanics.
From a tool builder’s perspective, this is a pleasant prospect, since it makes the
implementation of refactoring tools a much simpler task.
6 I freely admit that I spent one summer trying to understand what it takes to cover

Java’s generics in every detail, and gave up highly frustrated.
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No matter whether the tool user opts for (a) or (b): In either case, making
a failing refactoring work relies on the knowledge encoded in the compiler and
test suite. From an academic perspective, it is somewhat saddening that this
knowledge is not exploited by the refactoring tools, for computing all changes
required by a refactoring upfront. In fact, I find the prospect of being able to do
so, so intriguing that it leads me to posing the following

Research challenge for the future of refactoring tools:
to evolve the decision procedure

“does this change constitute a refactoring?”
(as implemented, e.g., by the compiler and test suite) into a search

procedure
“which additional changes are required to make this change a refactoring?”

Ideally, we can use the same implementation used for solving the decision prob-
lem for solving the search problem also. This would not only greatly reduce the
effort required to create new refactoring tools, it would also allow us to keep com-
piler and refactoring tools so closely coupled that changing (fixing or evolving)
one suffices for both.

In the next section, I will shed some light on systematic approaches to imple-
menting refactoring tools known from the literature, with a special focus on how
they exploit (program-independent) knowledge also encoded in the compiler. I
will not address in the following how the knowledge captured in test cases (which
is program-dependent) can be exploited; however, I do point out here that the
Smalltalk Refactoring Browser can actually make some use of it [35].

6 Principled Approaches to Implementing Refactoring
Tools

Considering the nature of refactoring tools as delineated in Sect. 3, it seems
clear that any principled implementation of a refactoring tool must observe the
generic pre- and postconditions of refactoring or, equivalently, preservation of
its invariants. The research challenge phrased above additionally suggests that
a refactoring tool should rely on the language expertise implemented in the
compiler. The approaches presented in the following do both.

6.1 Dependency Preservation

In light of the problems with framing behaviour preservation (Sect. 2.2), it seems
advisable to replace it with a notion that is better tractable. Dependency preser-
vation as put forward by Schäfer [36] is such a notion.

Dependency preservation abstracts from behaviour preservation in that it
promises to maintain all behaviour-critical relationships between program ele-
ments. For instance, it is perfectly plausible to require that, except for deliberate
changes, after a refactoring
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– all names in a program should bind to the same declarations,
– all method calls should be synchronized on the same monitors, and
– all methods should override the same methods

as before the refactoring. Indeed, any accidental change of binding, synchroniza-
tion, or overriding (collectively referred to as a change of dependency by Schäfer)
may lead to a change of behaviour and hence provides a reason for the rejec-
tion of the refactoring that causes it. Schäfer demonstrated the effectiveness of
dependency preservation by implementing a large number of refactoring tools
with correctness scores surpassing that of the Eclipse JDT’s built-in refactoring
tools, as measured by their own test suites [36].

Dependency preservation also solves some of the problems of the Replace

Inheritance with Delegation refactoring presented in Sect. 4. For instance,
in the code of Fig. 1(a), the method invocation m() in the body of B.n() is
bound to the definition of m() in class A before the refactoring; since it cannot
be bound after the refactoring (because m() has become inaccessible for n()),
a dependency of the name on its declaration could not be preserved. Similarly,
the binding of the field access b.i to A.i cannot be preserved, since after the
refactoring, class B no longer offers such a field (Fig. 1d).

Going beyond name binding, the loss of synchronization arising from naively
refactoring the code of Fig. 1(f) can be detected by the fact that wait() and
notify() are now invoked on different objects (making synchronization depend
on different monitors), whereas they were invoked on the same before. While such
a change of dependency is hard to detect statically in the general case, in the case
of Replace Inheritance with Delegation it is fairly simple, since this in
the delegating class and this in the class being delegated to can never point to
the same object. For the preservation of dynamic binding (Fig. 1e), the situation
seems more complex, as it would require a static analysis of dynamic dispatch-
ing behaviour even for Replace Inheritance with Delegation; however,
requiring that all overriding dependencies are preserved (independently of the
fact whether or where overriding actually leads to dynamic binding) is suffi-
cient for guaranteeing binding invariance (even though it may be too strong a
condition in certain cases).

Thus, we have that dependency preservation can cover a broad spectrum
of conditions that are otherwise difficult to express. However, as these exam-
ples also suggest, much of the art of implementing correct refactoring tools
using dependency preservation relies on identifying and being able to extract
the dependencies that guarantee behaviour preservation for arbitrary programs.
Particularly for refactorings that change the control or data flow of a program,
this may prove beyond reach.

6.1.1 Technical Enforcement
It is fairly obvious that dependency preservation is a special case of (generic)
invariant preservation as delineated in Sect. 3.3. Technically, it is enforced by
recording all dependencies before the refactoring (replacing for Step 2 in the
procedure of Sect. 3.3), and by re-computing and comparing them after the
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refactoring (Step 5). If any dependency has changed as a result of the refac-
toring, it is rejected and all associated changes are undone. Since computing
the dependencies can usually be trusted to the compiler, the refactoring tool
implementation is spared from repeating some of the language specification in
its own code. As noted by Schäfer, this is a huge advancement over traditional
precondition checking, which often requires laborious reverse engineering of the
language specification. On the downside, however, the fact that violated precon-
ditions are now implicit makes it harder for the refactoring tool user to figure
out what exactly led to a refusal.

For large programs, retrieving and storing all dependencies can be rather
expensive. Therefore, in all practical applications of dependency preservation,
only those dependencies that can be affected by a refactoring will actually be
recorded. Unfortunately, deciding which these are is a problem in its own right;
dependencies may stretch across several modules, and are not always obvious.
Making mistakes here will make refactorings relying on dependency preservation
unreliable.

6.1.2 Actively Preserving Dependencies
While being able to replace explicit precondition checking with attempting
dependency preservation is certainly an advancement for the conscientious refac-
toring tool builder, it still leaves the tool user with the problem of “too strong
preconditions”, i.e., the rejection of a refactoring in cases in which some moder-
ate additional changes would have made it possible. However, as has also been
shown by Schäfer [36], in certain cases the compiler can be exploited to compute
these additional changes also.

The original example of how this can work was given by Schäfer in his imple-
mentation of the Rename refactoring [36]. The idea here is to let the refactoring
tool compute the inverse of the binding function implemented by the compiler:
rather than computing for a given name in a given location the declaration to
which it binds (the binding function), a name is computed from a given dec-
laration (the one originally bound to) and a given location (where the name is
to be used; the same location as that of the original name) such that name, if
it exists, is guaranteed to bind to the declaration. This not only propagates a
change of the name of a declared entity to all references to (or accesses of) it, it
also introduces name qualification where needed.

A simple example showcasing the power of active dependency preservation
is given by the following code snippet (taken from [36]):

class A {
int x;
A(int newX) {

x = newX;
}

}

Supposing that the formal parameter newX is naively renamed to x, the decla-
ration of the field of the same name, x, will be shadowed inside the constructor,
so that the left-hand side of the assignment (now reading x = x) will also bind
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to the formal parameter, likely changing the behaviour of the program. How-
ever, computing the fully qualified name of field x referenced from the location
of the assignment yields this.x; replacing the left-hand side of the assignment
accordingly keeps the program intact. As Schäfer showed, this naming function
can be constructed systematically with little effort and high accuracy, by revers-
ing the name lookup function implemented by the compiler (see Sect. 6.3.2 for a
constraint-based account). Whenever this lookup function needs to be adjusted
(for instance, because the language evolves), its reverse can be adjusted in par-
allel, keeping all refactoring tools relying on it up-to-date (cf. Sect. 4.4).

It would seem that reversing name lookup can be extended to repair the
broken binding introduced by applying Replace Inheritance with Dele-

gation to the example of Fig. 1(a) also. Indeed, the compiler knows that for
a non-inherited method to be accessed across package boundaries, the method
must be declared public. It would therefore seem feasible to introduce a second
function which computes, for a given location and declared entity to be accessed
from that location, the set of access modifiers granting this access. However,
making a corresponding adjustment affects a declaration, rather than a reference
(as above insertion of a qualified name did); it will therefore affect all other
references to this declaration, too, and may interfere with other existing declara-
tions. While this may not seem problematic at first glance, as has been shown
elsewhere [45], changing access modifiers in an ad-hoc fashion may not only lead
to malformedness (for instance, in presence of overriding), but can also break
binding dependencies. This will be picked up again in Sect. 6.3.

And yet, active dependency preservation is not limited to adjusting names at
reference sites. For instance, as Schäfer demonstrated, synchronization depen-
dencies can also be actively preserved, by making sure that method invocations
remain synchronized on the same monitors as before a refactoring. Transferred
to the synchronization problem of Replace Inheritance with Delegation

(as exemplified by applying it to the code of Fig. 1e), dependency preservation
requires that the delegating object is passed (as a parameter) to the method
being delegated to. Following this advice, the naively refactored code below on
the left (which exhibits the lost synchronization) is changed to that on the right
(which preserves the original dependency):

class A {
void m() {

notify();
}

}
class B {

A a = new A();
void m() { a.m(); }
synchronized void n() {

wait();
}

}

⇒

class A {
void m(Object o) {

o.notify();
}

}
class B {

A a = new A();
void m() { a.m(this); }
synchronized void n() {

wait();
}

}
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6.2 Language Extensions and Restrictions

While dependency preservation is a powerful concept, Schäfer also showed that
it gets even more powerful when combined with language extensions and restric-
tions [36]. For instance, he observes that the synchronized method modifier in
Java merely provides syntactic sugar for the more general synchronized block:
a synchronized instance method is equivalent to a non-synchronized method
whose body is wrapped by a block explicitly synchronizing on this. Java with-
out synchronized methods, but with synchronized blocks, is thus a restricted
language to which any Java program can be straightforwardly transformed. This
restricted language is helpful, for instance, when performing the Move Method

refactoring, as exemplified by moving method m() in the following code from
class A to class B:

class A {
synchronized void n() {}
synchronized void m() {

n();
}

}

class B {}

class A {
synchronized void n() {}

}

class B {
void m(A a) {

synchronized(a) {a.n();}
}

}

⇓ ⇑
class A {

void n() {
synchronized(this) {}

}
void m() {

synchronized(this) {
this.n();

}
}

}

class B {}

⇒

class A {
void n() {

synchronized(this) {}
}

}

class B {
void m(A a) {

synchronized(a) {a.n();}
}

}

Here, the first step (indicated by the down arrow) is to convert the classes to
Java without synchronized methods (and without assuming this as the default
receiver). In the next step (right arrow), the method m() is moved as usual,
making sure that this is converted to a formal parameter (Schäfer actually
uses a language extension for this [37]). The last step (up arrow) converts the
classes back to Java with synchronized methods; note that, since the body of
m(A) is synchronized on a different object than this, conversion is possible
only for n(). Were class B a subclass of A, this and a would always point to
the same object, so that both methods could use the synchronized keyword.

As it turns out, name binding preservation can also be framed in terms of a
restricted language [38]. For this, all names used in references and declarations of
a program are replaced with unique names, or labels. Because each declaration
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now uses a different label, the binding rules of the language become extremely
simple: Each reference binds to the sole declaration carrying the same label.7 In
particular, no hiding, shadowing, obscuring, or overloading may get in the way
of a refactoring. After a refactoring, the declared entities can adopt their original
names, and the inverted lookup function can be used to compute the names of
the references.

However, as already noted in Sect. 6.1, there are refactoring problems that
exceed the capabilities of dependency preservation and language extensions or
restrictions. For instance, in the course of the Replace Inheritance with

Delegation refactoring access modifiers may need to be adapted at the declara-
tion site to keep a program well-formed (see Fig. 1a). In addition, if qualifiers (as
part of the name computed by inverting the lookup function) must be introduced
at the reference site, the names used for qualification may refer to inaccessible
entities, requiring additional access modifier adjustments to avoid malformedness
[38]. However, adjusting access modifiers can itself lead to a change of name bind-
ing, not only making binding preservation a recursive problem, but also inter-
mingling well-formedness preservation with dependency preservation. The same
applies to refactorings that may make a program ill-typed: For instance, when
the subtype relationship is removed (again as with Replace Inheritance with

Delegation), assignments (as in Fig. 1c) or member accesses (as in Fig. 1d) may
become ill-typed. For dealing with these kinds of problems, another principled
approach to implementing refactoring tools seems better suited: constraint-based
refactoring.

6.3 Constraint-Based Refactoring

Constraint-based refactoring was pioneered by Frank Tip et al., who adopted
Jens Palsberg and Michael Schwartzbach’s constraint-based capture of object-
oriented type systems [32] for the implementation of type generalization refactor-
ings such as Generalize Declared Type or Use Supertype where Pos-

sible [48,49]. However, rather than following the historic trail of this seminal
work, I present constraint-based refactoring as a way of preserving refactoring
invariants in the spirit of Sect. 3.3 here.

6.3.1 Preserving Dependencies with Constraints
To show how refactoring invariants can be expressed in terms of constraints, I
will start with preserving dependencies, as this allows me to draw some parallels
to Schäfer’s work. Below, I will address how well-formedness can be preserved,
using the examples of accessibilities and types.

7 Note the relationship to projectional editing, which uses references, or pointers,
rather than names.
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For the first part, we return to the name capture problem of Sect. 6.1:

class A {
int x;
A(int newX) {

x = newX;
}

}

A binding invariant of this snippet is expressed by the two simple constraints

refx .name = declx.name (1)
refnewX .name = declnewX .name (2)

Here, declx and declnewX represent the declared entities of the program (cur-
rently named “x” and “newX”, resp.), and declx.name and declnewX .name rep-
resent constraint variables holding the names of these entities. Analogously, refx
and refnewX represent references to the declared entities, and refx .name and
refnewX .name their names.

As invariants, (1) and (2) enforce that the names of the references must
always equal those of the declared entities they bind to, where the binding has
been determined prior to the constraint generation (e.g., by querying the com-
piler; but see Sect. 6.3.2 for how binding can be computed using constraints). A
Rename refactoring is hence expressed as changing the value of one of the con-
straint variables; the violation of constraints that this immediately causes flags
the loss of a dependency. For instance, if declnewX .name is changed to “x”, (2)
is immediately violated, since refnewX .name still holds the value “newX”. How-
ever, the lost binding can easily be restored, simply by letting a constraint solver
assign the other constraint variable (refnewX .name in the above example) the
same name (representing a corresponding name change in the program), hence
curing the violation. Thus, using a single set of constraints, we cannot only check
dependency preservation, but also compute the corrective changes required to
preserve dependencies actively (as in Sect. 6.1).

In constraint-based refactoring the name capture caused by renaming the
formal parameter newX to “x” is avoided by adding a third constraint

declnewX .name �= declx.name (3)

The generation of this constraint is justified by the fact that newX is declared in a
scope in which it would shadow the declaration of x, if their names were the same.
While not necessary for the program as is, it helps preserve the name binding
under renaming either newX or x, by requiring that their names are always
different. In fact, a constraint-based implementation of the Rename refactoring
would not need to reject the renaming of the formal parameter newX to “x”;
rather, it would rename the field x to a different name and, observing (1), the
reference to x with it. While this measure of actively achieving dependency
preservation differs from Schäfer’s (which worked by introducing qualifiers; see
Sect. 6.1), it is equally successful. In fact, it works even in cases in which name
qualification is impossible.
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6.3.2 Aside: Implicit Specification of Name Lookup and Its Reversal
Using Constraints

It is instructive to observe that, despite their technological differences, Schäfer’s
computation of the inverse of the binding function presented in Sect. 6.1 and the
constraint-based capture of active dependency preservation presented above are
closely related. This is revealed by the following slight modification of (1) and (2):

refx .name = refx .binding.name (4)
refnewX .name = refnewX .binding.name (5)

Here, the variable declarations to which the references refx and refnewX bind have
been replaced by the constraint variables refx .binding and refnewX .binding , resp.
Assuming that all names in a program are fixated (so that the name variables do
not change their values), a constraint solver will determine the bindings of refx
and refnewX by finding values for refx .binding and refnewX .binding such that the
constraints are satisfied. This corresponds to computing the lookup function.

Using the same constraints (4) and (5), that a binding must not change under
refactoring (the binding invariance) is expressed by fixating the values of the con-
straint variables refx .binding and refnewX .binding (the values just computed by
the solver). Renaming declarations (by assigning declx.name or declnewX .name
new values) and making the values of the refx .name and refnewX .name variable,
then corresponds to inverting the lookup function as proposed by Schäfer, in
that it propagates a changed name of a declared entity to its references. How-
ever, unlike for Schäfer’s procedural approach, which needs to provide related,
but still independent implementations for name lookup and name computation,
constraint-based refactoring exploits that constraints are generally undirected
(“n-way”), and makes do with a single specification. In fact, a single constraint-
based specification can be used to

1. extract dependencies before the refactoring (corresponding to Step 2 in the
generic procedure of Sect. 3.3),

2. check dependencies after the refactoring (Step 5), and
3. compute required corrective changes (part of Step 3).

As we will see next, constraints can also be used to

4. check well-formedness before and after a refactoring (Steps 1 and 4 in the
generic procedure of Sect. 3.3), and to

5. compute corrective changes required to preserve well-formedness (again part
of Step 3).

Note that Item 4 is also done by the compiler, which needs to check the same
constraints. Elements of Item 1 must also be implemented by the compiler (for
instance when resolving names or when creating tables for dynamic method
dispatch), even though most compilers will not use constraints and constraint
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solving for this purpose.8 Items 3 and 5 are actually part of the mechanics of a
refactoring; I will return to this at the end of this section.

6.3.3 Accessibility Constraints
One of the refactoring problems classified in Sect. 6.1 as not being amenable to
dependency preservation is that of adapting access modifiers. To get an impres-
sion of the problem, we adapt the code snippet of Fig. 1(a), adding C as a second
subclass of A defining an overriding method m():

package a;
class A {

protected void m() {...}
}
package b;
class B extends A {

void n() { m(); }
}
class C extends A {

@override protected void m() {...}
}

Recall that the problem of applying Replace Inheritance with Delega-

tion on class B was that it makes A.m() inaccessible from the body of class B.
This problem appears to be readily fixed by increasing the accessibility of A.m()
to public; however, this makes the program malformed, since Java requires that
overriding methods must be declared at least as accessible as the methods they
override. In this particular case, this means that accessibility of C.m() needs to
be adjusted to public as well; in other cases, other rules may apply.

A constraint-based solution to this problem is to express the well-formedness
rules related to access modifiers in the same style as the name binding rules
above. For instance, accessibility of A.m() from B can be expressed by the
constraint

declA.m().accessibility ≥ (B <: A ? protected : public) (6)

where <: denotes the subtype relation and ? : is the ternary conditional operator
(note that access modifiers are totally ordered in Java: private < package <
protected < public). The constraint says that protected accessibility for A.m()
suffices as long as B is a subclass of A; otherwise, it must be public.9 Note that
this constraint is only justified if B (or any other class from a different package)
requires access to A.m(); in the above example, it is required by the access
through B.n().
8 In fact, for efficiency reasons, it may not be advisable to use standard constraint

solving for this purpose. However, efficient one-way computations may be synthesized
from n-way constraints [22]. A conventionally implemented lookup function is a good
use case for this. See also at the end of Sect. 9 in Part II of this briefing, where this
issue is picked up again.

9 This greatly oversimplifies matters — see [38] for a more thorough account of acces-
sibility in Java.
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The fact that accessibility of C.m() must be greater or equal than that of
A.m() is expressed as the conditional constraint

C <: A → (declC.m().accessibility ≥ declA.m().accessibility) (7)

which says that if C is a subclass of A, accessibility of C.m() must be equal to
or greater than accessibility of A.m(). Note that both constraints (6) and (7)
use the subtype relation as a condition — this is important, since the Replace

Inheritance with Delegation refactoring changes this relation, and access
modifiers must adapt to the change.

Conditional constraints are commonplace in constraint-based refactoring (see,
e.g., [2]); however, they also impact tractability and hence require special treat-
ment. For instance, for refactorings that move program elements between scopes,
constraint (3) of Sect. 6.3.1 would need to be conditioned on both declared entities
residing in the same scope, so that the constraint is active when they do, and inac-
tive otherwise. In general, it is not trivial to know which constraints will actually
be needed in which form for a given refactoring, and generating all constraints, and
each in its most general form, will be too expensive. Therefore, the constraint gen-
eration process must “foresee” all changes a refactoring may possibly make [43].
Note how this parallels the problem of extracting all and only the dependencies
required for a specific refactoring in Schäfer’s work (cf. Sect. 6.1.1).

6.3.4 Type Constraints
Some of the remaining problems of Replace Inheritance with Delegation

discussed in Sect. 4 can be framed as typing problems, specifically as the loss of
well-typedness. Similar to accessibility above, preserving well-typedness can be
expressed as a constraint satisfaction problem.

To see how this works, we return to the example of Fig. 1, specifically the
code snippet

class A implements I {}
class B extends A {}
I i = new B();

Recall that applying Replace Inheritance with Delegation to class B
makes the assignment ill-typed, since B is no longer a subtype of I.

The corresponding typing invariant is expressed by the constraint

B <: decli.type

Clearly, this constraint, which is satisfied before the refactoring, is violated
after it, since the current type of i, I, is no longer a supertype of B. However, a
constraint solver can repair the broken constraint, either by changing the value
of delci.type to B (corresponding to a change of the declared type of i to B) or
by changing the type hierarchy so that B <: I (corresponding to letting class B
implement interface I). However, in a program larger than the above, we must
expect both changes to be subject to further constraints. For instance, class B
must implement all methods declared in I. Conversely, if members are accessed
on b, these members must be declared in interface I.



www.manaraa.com

200 F. Steimann

The latter constraint also plays a role in refactoring the code of Fig. 1(d),
again repeated here for ease of access:

class A { int i; }
class B extends A {}
B b = new B(); b.i = 0;

Here, the access of i on receiver b requires that i is a field of b, expressed by
the constraint

refb .type <: decli.host

Again, removing the subtype relationship between B and A violates this con-
straint. A constraint solver can compute a fix, however: by setting decli.host to
B, the constraint is satisfied again (and the declaration of field i is pushed down
from class A to class B). In most real programs, however, this fix will be prevented
by other constraints requiring that field i remains a member of class A.

A detailed presentation of the Java type constraints relevant for type-related
refactorings is found in [48].

6.3.5 Generic Constraint-Based Refactoring Tool Implementation
It should be clear from the above that using constraints, we cannot only

– check well-formedness and dependency preservation of a program (and hence
whether a refactoring was successful),

but also

– extract dependencies (as in the name binding example) to be preserved, and
– compute the corrective changes required to actively preserve well-formedness

and dependencies.

What is missing from a completely constraint-based implementation of a refactor-
ing tool is that the refactoring intent (see Sect. 3.1) is also expressed in terms of
constraints. However, in as much as the changes constituting the refactoring intent
can be expressed in terms of new values for constraint variables (as was the case
for most examples presented in this section), this is easy: Simply add constraints
forcing the new value (e.g., adding the constraint declnewX .name = “x” forces
the renaming of newX). The constraint solver is then a generic refactoring engine
capable of computing all changes required to realize a given refactoring intent.

7 Refactoring Résumé: Three Competing Camps

The previous sections suggest that three different perceptions of refactoring tools
have emerged in the refactoring community:

– Tool builders maintain that to implement a refactoring correctly, it suffices
1. to identify its preconditions and
2. to specify the mechanics performing the changes that constitute the

refactoring.
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– Tool users suggest that for refactoring tools to be useful,
1. an implementation of the mechanics and
2. automated oracles checking the generic postconditions (compiler and test

suite)
are all that is required.

– Tool researchers hope that the necessary changes associated with a refactoring
can be synthesized from
1. the invariants of the refactoring and
2. the specific changes to be seen in the program (the specific postconditions,

or refactoring intent).

Reality catches up with:

– tool builders when the bug reports from users start coming in, and the struggle
against the intricacies of the subject language leads to thoughts of resignation;

– tool users when they lose control over their code, because they are trapped
in fixing bugs they did not introduce, in places they had not dreamt of; and

– tool researchers, when they apply their tools to real programs written in real
programming languages and they learn how complex the semantics of these
languages are.

Undoubtedly, building correct refactoring tools is hard. With the compiler
specifying the semantics of a programming language, it seems that re-using as
much of it as possible for the implementation of refactoring tools is the key to
success.

Part II: Their Kin

Maybe the technical difficulties of producing correct refactoring tools and the
expected benefit do not match well. Maybe the investment necessary to get refac-
toring right pays only if other programming tools profit from it, too. Maybe there
is a common basis of a large variety of programming tools, of which refactoring
tools are just one offspring.

Figure 2 depicts a bunch of such tools that all depend on a single software
artefact, the specification of the static semantics of a programming language.
In this bigger picture, it appears that refactoring merely plays a small, if not
subordinate, role. However, we have seen that refactoring is also one of the
harder problems in this bouquet, requiring some guarantees with respect to
well-formedness and behaviour. For any specification sufficient for refactoring
we may therefore expect that it is sufficient for the other problems as well.

8 Static Checking

Static checking is a central activity of compilers that comes straight after syn-
tactic checking, or parsing. Depending on the language specification, it includes
checks that all names are declared before they are used, that all expressions are
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Fig. 2. Single investment, many pay-offs.

well-typed, etc. A program that passes all checks is considered well-formed, and
ready for code generation or interpretation.

Static checkers can be implemented in a number of ways, with speed usually
being a primary concern. However, there is a growing awareness of the fact that
static checking is an option that can be traded for flexibility [6]. In addition,
frameworks and even individual users of a programming language may define
their own rules of well-formedness (“coding conventions”), which they want to
see enforced by a compiler. JavaCOP [1] and the Checker framework [9] are two
representatives of this movement in the Java field; for other, especially modelling,
languages, the Object Constraint Language (OCL) is in use. Note that JavaCOP
and OCL rely on constraints (but not constraint solving!) for static checking;
since constraints are also the basis of constraint-based refactoring (Sect. 6.3),
they are a hot candidate for our central capture of static semantics.

To see how rules of well-formedness can be expressed with constraints, we use
a simple example. For any conventional programming language declaring names,
we have a well-formedness condition stating that for all uses of (or references to)
names there must exist a declaration introducing that name. More formally, we
have that

∀ref ∃decl : ref.name = decl.name (8)

Applied to the program

int i;
bool j;
i = 1;
j = true;
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this rule gives us the two constraints

∃decl : refi .name = decl.name (9)
∃decl : refj .name = decl.name (10)

Note that this rule does not express to which declaration a name does bind —
it just expresses that for a program to be well-formed, a declaration must exist
to which the name can bind.

Another well-formedness rule that is straightforwardly expressed using con-
straints is usually found in statically type-checked programming languages. It
requires that the types on both sides of an assignment must equal. Expressing
this rule with constraints and applying it to the above program will give us
something like

refi .binding.type = lit1.type (11)
refj .binding.type = littrue.type (12)

As in Sect. 6.3, the constraint variables refi .binding and refj .binding repre-
sent the declarations (declared entities) the references bind to. The above well-
formedness constraints (9) and (10) guarantee that a value can be found for these
variables (because a declaration carrying the same name as the reference must
exist), but for the type checking to be effective, the variables need to have values
assigned. While one could argue that since constraints are generally undirected,
the type constraints (11) and (12) can be used to compute the bindings of i
and j (taking (11) and (12) as implicit specifications of the binding function;
cf. Sect. 6.3.2), generally, type information does not suffice to determine binding
unambiguously (what if i and j had the same type?) — this is what the names
are for.

9 Name Binding

In contemporary programming languages like Java, name binding is the Siamese
twin of static checking: One cannot live without the other. While a more thor-
ough treatment of the interrelationship can be found in a companion briefing on
“Name Binding” by Guido Wachsmuth (in this Volume), I want to emphasize
here that name binding can in principle be expressed as a constraint satisfaction
problem, and thus thrive on the same (constraint-based) specification of static
semantics as all other tools discussed in this part of my briefing. In particular,
expressing both static checking and name binding as one constraint satisfaction
problem, the two tasks are automatically intertwined by the constraint solver.

Section 6.3, specifically constraints (4) and (5), already provided a brief
glimpse of how names can be bound using constraints. Here, we note that for
name binding, we need to complement the well-formedness constraints (9) and
(10) guaranteeing that the names can be bound with a set of rules expressing
how they are bound. Just like the constraints (4) and (5), the constraints
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refi .binding.name = refi .name (13)
refj .binding.name = refj .name (14)

provide an implicit specification of the binding function applied to refi and
refj . Interestingly, the well-formedness constraints (9) and (10) and the bind-
ing constraints (13) and (14) are related by Skolemization, with binding being
the Skolem function.10 Given that Skolemization makes (9) and (13), as well as
(10) and (14), equisatisfiable, and given that (13) and (14) are more useful (they
can be used for well-formedness checking and to compute name binding), the
well-formedness constraints (9) and (10) appear dispensable. This is the more
so since (13) and (14) can be used to detect ambiguity: if the constraint solver
finds more than one value for a binding variable, binding cannot be uniquely
determined. (Note how this amounts to replacing ∃ in (9) and (10) with ∃1.)

10 Automatic Repair

If constraints can be used to check the well-formedness of a program, it seems
natural that using constraint solving instead of constraint checking, the same
constraints can also be used to correct a malformed program, simply by replacing
fixated values in the failing constraints with constraint variables for which a
constraint solver can compute new values. These new values then represent the
fixes that mend the program.11 However, contemporary IDEs implement auto-
fixes (also called quick fixes) imperatively.

The auto-fixing implementations offered by contemporary IDEs are often
short-sighted in that they offer fixes that break the program in other places.
As for refactoring tools, there is a discussion whether this presents a bug or a
feature: While a fix introducing a bug may not be a fix to some users, others
may argue that it is still helpful if it saves manual edits. Without delving into
this discussion, we note here that the same erratic behaviour can be obtained by
solving violated constraints locally; if undesired, this behaviour can be cured by
submitting all derivable constraints constraining the variables to the solver [42].
As for constraint-based refactoring (Sect. 6.3), this may turn out to be too expen-
sive; again, as noted at the end of Sect. 6.3.4, much of the art of using constraints
lies in deciding precisely which constraints to generate.

To give the reader an impression of how constraint-based auto-fixing works,
we look at the following piece of malformed code written in our sample language:

int i;
bool j;
i = 1;
k = true;

10 See [41] for some more details on how Skolemization relates well-formedness checking
and binding.

11 Note that we do not consider syntax errors here.
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Most programmers would agree that the obvious way to fix the name binding
problem is to replace k in the program text with j, but not knowing what the
intention of the programmer was, all fixes

int i;
bool j;
i = 1;
j = true;

int i;
bool j;
i = 1;
i = true;

int k;
bool j;
i = 1;
k = true;

int i;
bool k;
i = 1;
k = true;

are equally conceivable. In fact, all these fixes can be derived from solving the
(combined well-formedness and binding) constraint

refk .name = refk .binding .name (15)

with refk .name, refk .binding , decli.name, and declj .name all being variable. If
a tool user has a preference for changing the names of references rather than
declarations, this can be expressed by fixating the values of the constraint vari-
ables decli.name and declj .name to their current values; if the preference is on
changing the names of declarations, the value of refk .name can be fixated. Note
that tying all variables to their current values makes the constraint unsolvable;
it reflects the malformedness of the program in its present form.

As the alert reader will have noticed, two of the above fixes are short-sighted,
in that they produce malformed programs. However, the resulting programs do
not suffer from name binding problems — they are ill-typed. The problematic
fixes can thus be prevented by adding the relevant type constraints to the con-
straints to be solved, in the above example

refk .type = refk .binding .type
refk .type = littrue .type

decli .type = typeint .val
declj .type = typebool.val

The constraint variable connecting the name constraint (15) with the above type
constraints is refk .binding; if its value is changed in the course of solving the name
constraint, this change propagates to the type constraints, where it leads to the
computation of the (new) type of the reference refk . With all constraint variables
representing types having fixated values, the only solution of the joint constraint
system is setting refk .name to “j”; accepting new values for type variables also
results in alternative fixes adjusting types in declarations or literals. Whether
these additional fixes make sense and should be offered to the user is a different
discussion; here it is important to note that (a) all fixes have been computed
from the very same constraints used for detecting malformedness and (b) no
fix computed by these constraints leaves the program malformed. As can easily
be imagined, obtaining the same guarantee from an imperatively implemented
auto-fix tool is hard.
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A first delineation of constraint-based repair (together with constraint-based
code completion) appeared in [46]; a more comprehensive treatise (based on
constraint attribute grammars) has only recently been published [42].

11 Code Completion

Using constraints and constraint solving, auto-completion corresponds to com-
puting values for constraint variables that do not have initial values that could
be derived from a program as is. For instance, when the current program reads

int i;
bool j;
i = ∧

and the user is about to enter a name at the caret position which represents a
new reference, refnew , the constraints

refnew .name = refnew .binding.name

refnew .type = refnew .binding.type
refi .type = refnew .type

known from Sects. 8 and 9, and given that the current value of refi .type, int, is
fixated, suffice to compute refnew .name := “i” as the only valid completion of
the program. Note that, analogously to auto-fixing, not generating all constraints
would give us alternative completions (such as refnew .name := “j”), which would
however give us a malformed program.

Auto-completion is the dual to auto-fixing: most, if not all, incomplete pro-
grams can be thought of as being malformed (if only by introducing a random
program element that renders the program so), so that the repairs represent
the completions; and most, if not all, malformed programs can be thought of as
being incomplete, so that eliminating the parts that are thought to cause the
malformedness, and completing the resulting program, presents a fix. Therefore,
it is highly advisable that auto-completion and auto-fixing are based on the same
implementation; in current IDEs, however, this does not seem to be the case.

12 Controlled Change

It is safe to claim that programming is an alternating sequence of behaviour-
altering change and refactoring. With refactoring being increasingly supported
by corresponding tools, the next challenge is to support behaviour-altering
changes also. At the very least, such support should guarantee that behaviour-
altering changes leave a program well-formed; at a more advanced level, such
support would ensure preservation of arbitrary, selected properties the program
had before the change. We call a change that is guaranteed to preserve selected
properties a controlled change. Refactoring is a controlled change in which the
selected property is behaviour.



www.manaraa.com

Refactoring Tools and Their Kin 207

Arguably, the same discussion that is currently being led with regard to
refactoring can also be led with regard to controlled change: Given some decision
procedure (“oracle”) for the desired properties, a tool or the programmer can go
ahead and change a program in any way they deem appropriate, and the oracle
can report the accidentally introduced errors later. In particular, any property
that can be cast into a static check can be preserved this way. For Java programs
this includes non-nullness, object confinement [20], etc. (see [1,9] for many more
examples).

However, for academics at least, this would seem too modest a solution to be
satisfactory. In fact, given how far we got in Part I of this briefing by computing
from the same specification used for checking the very changes required to pass
a check, why could the same not be achieved for other controlled changes? And
indeed, the principle is the same: Identify the relevant invariants and make sure
that they are preserved.

There is however a major difference between (arbitrary) controlled changes
and refactoring: While refactorings usually follow patterns (refactorings are cata-
logued!), other controlled changes may not. Indeed, unless we go down to atomic
changes (such as the changes used in mutation testing; see below), it is not clear
whether we will ever see a compilation of controlled changes that receives the
same recognition as Fowler’s refactoring catalogue [12]. The source manipulation
menus of contemporary IDEs such as Eclipse (containing entries like “surround
with try-catch”) may provide a starting point for implementing more complex
controlled changes, however.

On the other hand, not all refactorings are catalogued: Firstly, a program-
mer is free to make any changes she pleases manually, and still demand tool
support making sure that these changes constitute a refactoring. Secondly, tools
can be devised for non-catalogued, ad-hoc refactorings (or “refactorings without
names” [44]) also. If these can be made to work, other non-catalogued controlled
changes should work also.

13 Mutation Testing

Mutation testing or, as it is sometimes also referred to, mutation analysis, is
the technique of changing a program in such a way that it still compiles, but
exhibits changed behaviour. Mutation testing is useful for testing the adequacy
of test suites: for each behaviourally changed program — called mutant — that
does not get caught, an additional test case should be added which catches it.

Traditional mutation testing works by applying mutation operators to pro-
grams. This suffers from two major problems: (1) The mutation operators may
make the mutant malformed, and (2) the mutant may exhibit equivalent behav-
iour. While the former can be avoided by applying only mutation operators that
cannot make a program malformed, or (somewhat expensively) by rejecting gen-
erated mutants that do not compile, the latter is a hard problem (undecidable
in general) and in any case requires human inspection.

The attentive reader will have noticed that mutation testing (or, more specif-
ically, the generation of non-equivalent mutants) is a special case of controlled



www.manaraa.com

208 F. Steimann

change (Sect. 12). In fact, it is a complement of refactoring, one in which well-
formedness is to be preserved, but behaviour is to be changed. The great advan-
tages of implementing mutation testing as a controlled change activity are that
(a) it does not limit mutations to the application of (single) mutation operators
that cannot introduce malformedness, without having to pay the price of time-
consuming compiler checks rejecting malformed mutants; and that (b) mutants
are more likely to exhibit changed behaviour, namely when behaviour-critical
dependencies (Sect. 6.1) have been changed by the mutation.

To give a concrete example of how this may work, we use our simple language
again and start with the program

int i;
int j;
bool k;
i = 1;
j = 0;
k = true;
i = j;

A traditional mutation operator would replace the literal 1 with 0 (or vice
versa), or true with false, which cannot make the program malformed. How-
ever, replacing names (identifiers) in the same shallow manner risks making the
program ill-typed, as evidenced by replacing i with k in an assignment. By sep-
arating the set of constraints generated for the above program into ones that
preserve well-formedness and ones that preserve behaviour-critical dependencies
(see Sect. 6.1 for examples of these), and by negating one constraint of the latter
kind, we can let the constraint solver compute a change that leaves the program
well-formed, but (likely) exhibiting changed behaviour. For instance, for the last
line of the above program we get the constraint

refj .binding .name = refj .name

which is solved by the assignment refj .binding := declj (an extracted invariant
in the case of refactoring; cf. Sect. 6.3.2). By adding a constraint

refj .binding �= declj

(which negates the extracted invariant) and solving all constraints we get a new
program in which j in the last line has been replaced with i (assuming that
the names of declarations have been fixated; however, this is not required for
the approach to work). Note that the well-formedness constraints (which have
not been touched) prevent that i is replaced with k, since this would make
the program ill-typed. Standard mutation operators do not have this language
intimacy, and always apply their changes indiscriminately.

14 Code Generation

Code generation is the big brother of code completion (Sect. 11): it can be seen
as the iterative completion of a program, starting with no (or the empty) pro-
gram. A trivial approach to generating (arbitrary) well-formed code follows
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Listing 1. Definite clause grammar generating (and accepting) only well-formed pro-
grams of a given length.

program(LOCs) -->
decls([], Tab, LOCs, LOCsR),
assigns(Tab, LOCsR, 0).

decls(Tab, Tab, LOCs, LOCs) --> [].
decls(In, Out, LOCs, LOCsR) -->

{LOCs > 0},
decl(In, Tmp),
{LOCsD is LOCs - 1},
decls(Tmp, Out, LOCsD, LOCsR).

decl(Tab, [var(Name, Type)|Tab]) -->
type(Type),
var(Name),
{nonmember(var(Name, _), Tab)}.

type(int) --> [int].
type(bool) --> [bool].
var(i) --> [i].
var(j) --> [j].
assigns(Tab, LOCs, LOCs) --> [].
assigns(Tab, LOCs, LOCsR) -->

{LOCs > 0},
assign(Tab),
{LOCsD is LOCs - 1},
assigns(Tab, LOCsD, LOCsR).

assign(Tab) -->
var(Name),
{member(var(Name, Type), Tab)},
[=],
lit(Type).

assign(Tab) -->
var(Name1),
{member(var(Name1, Type), Tab)},
[=],
var(Name2),
{member(var(Name2, Type), Tab)}.

lit(int) --> [0] | [1].
lit(bool) --> [true] | [false].

the generate-and-test paradigm: Syntactically well-formed programs, generated
using the language’s grammar or constructor invocations on an object-oriented
capture of the language’s abstract syntax, are subjected to static checking, dis-
missing all (semantically) malformed programs. However, while straightforward,
this approach is usually too expensive for practical use.

A more practical approach to generating (arbitrary) well-formed code is to
use attribute grammars enhancing the syntax rules of a target language with the
rules of (static) semantics [25]. By replacing the computation of the attribute
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values of such a grammar with constraint solving, we can make sure that all
programs generated by this grammar are well-formed [42]. For instance, the
definite clause grammar (DCG) of Listing 1 can be used to generate all well-
formed programs of our little sample language having a given number of lines
of code (LOCs). Note that it uses unification and backtracking for constraint
solving, which are also the main mechanisms of parsing in Prolog.

However, the use cases for generating arbitrary well-formed programs are
fairly limited (but note that they include model checking language specifications
[17] and testing programming tools [8], which both are highly relevant in the
context of this briefing). What is needed more often is the generation of pro-
grams devised to fulfil some given purpose. In the most general case, a program
generator would be an arbitrary program (written in a generator, or meta, lan-
guage) that produces, from some given input, an output program in a target, or
object, language that is well-formed according to the rules of that language.

The problems of and solutions for safe program generation are the topic of
the companion briefing on “Structured Code Generation Techniques” provided
by Yannis Smaragdakis et al. in this Volume, to which I would like to refer
interested readers at this point. However, I will not leave them without noting
that any proof of correctness of such program-generating programs via their
compiler (the meta-language compiler), i.e., the proof of the fact that a given
program-generating program can produce, for any input, only output programs
that are well-formed in the target language, requires a full and formal capture
of the well-formedness rules of the host language, for instance in first-order logic
[23]. The constraints presented throughout this briefing are first order; hence, it
seems justified to add structured code generators to the circle of programming
tools profiting from the same single specification of a language’s static semantics.
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Abstract. Data analysis is among the main strategies of our time for
enterprises to take advantage of the vast amounts of data their sys-
tems generate and store everyday. Thus the standard relational database
model is challenged everyday to cope with quantitative operations over
a traditionally qualitative, relational model.

A novel approach to the semantics of data is based on (typed) linear
algebra (LA), rather than relational algebra, bridging the gap between
data dimensions and data measures in a unified way. Also, this bears
the promise of increased parallelism, as most operations in LA admit a
‘divide & conquer’ implementation.

This paper presents a first experiment in implementing such a typed
linear algebra approach and testing its performance on a data distrib-
uted system. It presents solutions to some theoretical limitations and
evaluates the overall performance.

Keywords: Formal methods · Linear algebra · Big data · Map reduce ·
Hive

1 Introduction

In a world where data are generated faster than humans can analyze and com-
prehend, only decision support systems are capable of keeping up and providing
analytics on time. Among these, Online Analytical Processing databases (OLAP)
are used by data analysts to navigate across vast amounts of data and find busi-
ness advantages or new opportunities.

Databases have long used relational algebra (RA) to model data storage, the
operations that are carried out on data and the language used to interact with
them. The so-called relational model is the formal underpinning of both OLTP1

applications and OLAP2 systems, in spite of serving two very distinct purposes
and requirements. OLTP applications target small transactions and focus on the

1 OLTP stands for “Online Transaction Processing”.
2 OLAP stands for “Online Analytical Processing”.
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business frontend. OLAP systems focus on aggregating data to create informa-
tion that is used by data analysts, so that these can decide which action might
be best for their purposes. Harrah’s Entertainment improved their customer
practices and increased its revenue due to insights obtained from their customer
center warehouses [1]. Another well-known example is Google’s prediction of the
influenza outbreaks in 2009. The prediction was made much quicker than the
center of disease control (CDC) [2].

Similar results are achieved through analytical queries which, however, take
a long time to complete, some taking hours or even days [3]. As data grow, this
has a twofold impact. If, on one hand, queries take longer to complete, on the
other hand more information can be extracted from the increased amount of
data. As business success relies more and more on this kind of technology, it
becomes increasingly important to have a fast and correct solution.

Macedo et al. [4] argue that relational algebra is adequate for giving semantics
to the qualitative side of data, falling short where quantitative information is
handled. They provide a novel approach based on linear algebra (LA) capable of
not only expressing the semantics of OLAP system constructions such as data
cube, roll up and cross tab, but also providing formal semantics for both the
quantitative and the qualitative side of data. Their approach is columnar in
the sense of representing columns in data relations by typed matrices, and is
algebraic in the sense of relying only on matrix operations to encode queries.

One of the core promises of the typed linear algebra approach is the amount
of parallel computation that can be performed, since matrix multiplication is
a well-known ‘divide & conquer’ operation. On the negative side, the matrices
involved are very large and sparse. If a proper storage format is not leveraged or
if the data structure used does not take into account the operations required by a
query, problems of performance and memory arise. Moreover, the theory requires
an additional matrix product, named the Khatri-Rao product. This operation is
essential to the algebra, capturing data joins in a simple and algebraic way.

Contribution. The main aim of this paper is to provide a distributed implemen-
tation of LA-based data processing. One of the challenges is that information
needs to be consistent over a set of independent nodes. As such, the paper con-
tributes to the LA-based approach to data analytics in several ways:

– Selection and improvement of an adequate sparse matrix format to handle
the data and computation.

– Proposal of a Khatri-Rao product algorithm that can work on dense and
sparse matrices.

– Proposal of a matrix encoding to keep the data consistent on a distributed
setting.

– Evaluating the performance of query analysis tasks on a distributed setting
with a typed linear algebra computation.
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2 Background

Let T be a relational data table in a relational database. Looking at T we find
two kinds of attributes (columns of the table): either they are numeric, and their
values can be subject to numeric operations, or they are symbolic. Attributes of
the first kind are quantitative in nature — they are referred to as data measures;
those of the second kind are qualitative and are known as dimensions.

This dimension/measure binomial leads to two kinds of matrices in the LA
approach: dimension matrices, also called projection functions, and measure
matrices. The latter are diagonal matrices with as many rows/columns as the
number of data in the corresponding data column. The former are Boolean matri-
ces whose cells addressed by (d, n) hold 1 iff the data value d can be found in
record n of the table and 0 otherwise. These two kinds of matrix are exemplified
by the middle and bottom tables of Fig. 1, respectively.

Fig. 1. Example of source
data (top table), measure
matrix (middle table) and
dimension matrix (bottom
table).

As can be seen from these examples, both matri-
ces tend to be sparse; a projection matrix with n
lines and m rows will have m(n−1) zeros; if n and m
are the same, then there are n2−n zeros (quadratic
growth), which is what happens in every measure
matrix.

To work with matrices of this kind one needs
special matrix formats that minimize memory
usage. Fortunately, this topic has been heavily stud-
ied in the literature [5]. From the many formats
available, one seems to the best suited: Compressed
Sparse Column (CSC). It uses three arrays to store
the information of a matrix: (a) an array “Values”
holding all non-zero values, sorted by columns; (b)
another array “Rows” keeping track of the original
row position of values; (c) a final array “Pointer”
indicating where every column starts and ends.

Many algorithms have been proposed for matrix
product, from the naive O(n3) algorithm to the
Strassen algorithm, which is O(n2.81) operations,
or the one proposed by Coppersmith and Winograd
which is O(n2.38) [6]. By contrast, the Khatri-Rao
product which is central to the typed linear algebra
[4] approach has not driven much attention in the literature. To the best of our
knowledge, Sect. 3 presents the first version of the algorithm tuned for sparse
matrices.

3 Matrix Generation and Computation

Improving the CSC format. Dimension and measure matrices, illustrated in the
middle and bottom table of Fig. 1, have a special property: each matrix column
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contains one non-zero element only. This makes it possible to improve the CSC
format even further. On the measure matrices the improvement is to use a single
array containing only the values, instead of using the standard three-array ver-
sion of CSC format. By storing the values sequentially and by storing the initial
column position of the matrix when divided in multiples parts, it is possible to
know the correct position of each value.

We want to store and process the matrix data in a distributed system, where
each independent node stores an horizontal partition of each table. As a single
node of the system only has a partial view of the whole table and it is going to
generate part of the global matrices, it must be able to generate unique identifiers
for every attribute. To solve this issue without relying on a global entity that
keeps track of the id of every attribute, we apply a 64base encoding3 that creates
a unique id for each attribute and can be directly mapped to the attribute. The
application of 64base encoding with the proposed matrix storage format is a
novel matrix encoding that can be used to generate, store and process typed
matrices in a data-distributed setting.

Implementing the Khatri Rao matrix product. Given two matrices A and B, with
dimensions n×m and p×m, respectively, the result of the Khatri Rao product of
A by B, denoted by A�B, is a matrix with dimensions np×m. The computation
of A � B can be seen as an iteration over the columns of the argument matrices
(this is why A and B must have the same number of columns), by multiplying
every element of each column of matrix A by every element of the corresponding
column of B. Essential to understanding the algorithm being presented is to
know how to calculate the position of the results on the output matrix. If M
is the current matrix A row, N is the current matrix B row then the resulting
position is given by p×M + N .

Algorithm 1. KhatriRao product
Require: Marix A(n × m), Matrix B(p × m)
Ensure: Matrix C(n ∗ p × m)

C ← [n ∗ p][m]
for i = 0 to m − 1 do

for j = 0 to n − 1 do
for k = 0 to p − 1 do

value ← A[j][i] ∗ B[k][i]
destLine ← p × j + k
C[destLine][i] ← value

end for
end for

end for
return C

3 Cf. 64 base encoding.
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This algorithm has been added to the standard Linear Algebra library
matrix-toolkits-java. This is an open source, high performance numerical library
for matrix computation in Java. The algorithm has been adapted to work with
the compressed matrix format presented in the previous section. In this format,
when two projection functions are multiplied by a Khatri Rao product and since
there is only one element per column the operation can be carried out in a lazy
manner without having to create a dense matrix.

4 Evaluation

TPC-H4 is an industry accepted OLAP benchmark. This section describes the
experiments carried out to evaluate the implementation of our matrix encodings
and operations using a modified version of TPC-H query 1. This evaluation was
carried out with an Hadoop cluster with five servers, each with Ubuntu 14.04
64 bit, running on Intel Core i3-3240 @ 3.40 GHz, 3K cache and 8 GB of RAM.
Data are generated from the TPC-H benchmark in the standard way. In this
section we will introduce the derived query, its translation to a LA encoding and
the overall set up of the tests carried out.

The query and its LA encoding. TPC-H query 1 was selected as first benchmark
because it matches with several aspects of [4], namely: data are taken from
a single raw data set (table), grouping involves two attributes only and the
operation to be computed is a slice of a data cube. Thus data can be encoded
as a vector filtered by the “where” clause.

Query 1 calls for three projection functions, one per attribute (Returnflag,
Linestatus, Shipdate) and for a measure matrix for attribute Quantity. The
‘group by’ aggregation corresponds to the Khatri-Rao product of projection
functions Returnflag and Linestatus. The result of this operation returns a
matrix recording all possible combinations of values of such attributes:

(tReturnflag � tLinestatus) · [[T ]]Quantity · filter (1)

Second in the pipeline is the measure matrix which, composed with the
Khatri-Rao outcome, yields the corresponding values for each combination. The
final step,

filter = (!Shipdate�1998−08−28∧Shipdate�1998−12−01)◦

4 URL: http://www.tpc.org/tpch/default.asp.

http://www.tpc.org/tpch/default.asp
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is the multiplication by a column vector, which encodes the filtering of the data,
which is denoted using the “!” notation of [4]. Altogether, this pipeline aggre-
gates the values in the matrix rows and filters the results by a predicate on the
Shipdate attribute.

Results. Pipeline (1) relies mostly on matrix multiplication, an operation which
can be performed in a “divide and conquer” fashion, making the script a can-
didate for distributed data processing. This section gives the results of bench-
marking this script on top of the Hadoop framework. This framework provides
a fault tolerant distributed file system (HDFS) and a “Map-Reduce” applica-
tion that allow us to run our query on top of it. Upon failures, the framework
automatically resubmits failed jobs, hiding such complexity from the implemen-
tation. Additionally, resource scheduling in the cluster is of no interest in this
experiment as it is a controlled environment that runs only the tasks that we
assign them. The tasks are executed in batch mode and as such we don’t seek
to assess the execution of the experiments with concurrent users.

We measure the job latency and resource usage. We compare our results with
Hive [7], a Hadoop application that translates SQL to Map-Reduce jobs. Both
applications divide a database table horizontally through the nodes and require
an initial loading phase where the files containing the raw data are loaded and
converted to the internal formats. In the experiments, Hive will be assessed with
text file and optimized row format (ORC) without compression. Our approach
does not use any compression either.

One machine hosts the HDFS name-node, the YARN resource manager and
the Hive server. The remaining machines contain the HDFS data node and the
YARN node manager. Each resource is given a 1 GB JVM. In each machine
4 GB are made available to YARN, which makes a cluster with a total amount
of 16 GB of RAM with 32 virtual cores. Each HDFS block has size 64 MB.

Fig. 2. Job latency

The experiment was executed
over data generated by the TPC-H
LineItem data table with the differ-
ent scale factors that generate tables
of increasing size. Scale factor 2 gener-
ates a table with an approximate size
of 1.5 GB while the scale factor 32 a
table with size 23.5 GB. The presented
results are the average of a 10 run
experiment. Figure 2 presents the aver-
age time it took to complete a job in
the cluster. As can be observed, our
approach has a significant improve-
ment on the time it takes to com-
pute the results. The improved latency
comes mainly from the matrix encod-
ing that not only allows to read the necessary dataset but also can be efficiently
processed by the Khatri-Rao product. While relational algebra approaches
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Fig. 3. CPU usage Fig. 4. IO wait

require the processing to read every column of a dataset, our approach, sim-
ilar to column oriented solutions, just processes the subset of the data crucial
for the query [8].

The results presented in Figs. 3 and 4 are a CDF (Cumulative Distribution
Function) from all the experiments of the CPU usage using the dstat tool on
the nodes that carry out the computation. From these plots we gather that the
ORC format does a much better job at using the CPU as its usage percentage is
between 96 and 100 while spending less time waiting for I/O operations. On the
other hand, our approach has the CPU usage more distributed between 90 and
100%, which means that it spends more time waiting on I/O operations as can
be seen in Fig. 4. Even though not perceived in Fig. 4, the ORC formats spends
considerable less time in I/O.

Fig. 5. Data read from disk and over the net-
work.

Hadoop reads a block of a
file locally if available or reads it
through the network otherwise. So
we decided to aggregate the values
from both channels to see which app-
roach needs to read the least amount
of bytes. From Fig. 4 it becomes clear
that the textual format used in Hive
is the least efficient while a distinct
pattern can not be found in the other
approaches. Nonetheless, the Hive
ORC on average seems to use less
data on smaller sizes while our app-
roach seems to use less data as scale
factor increases. These results relate
nicely with the latency time, explaining why our approach terminates much
faster (it needs to read less information).
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5 Conclusions and Future Work

This paper presents a first implementation and test of a typed linear algebra (LA)
approach to data processing in a distributed environment. These preliminary
results indicate that, compared to a standard Hive implementation, we have an
interesting solution to further explore and test, as we witness an increase of 60%
at most in the latency of the jobs and use about 45% less data on the best case.
On the other hand Hive has a relative better CPU usage.

Recent developments [9] show similar advantages of the typed LA approach
to data processing in parallel environments, while a strategy for translating SQL
analytical queries to LA scripts is defined. We plan to automate this process,
which will make our experiments much easier to carry out for the other TPC-
H queries. This could also be applied to translating MDX queries [10]. Last
but not least, and as anticipated in [9], linear algebra enables formally correct
transformation of LA scripts, making it possible to compare different LA imple-
mentations of the same query for performance.

In spite of such positive results, definite conclusions can only be drawn once
a comprehensive set of TPC-H queries is benchmarked. The main contribution
of this short paper is to give a preliminary evaluation of the performance of
LA scripts generated from SQL analytical queries running on a data distributed
environment. This is a promising area of research that we intend to develop
further in the future.
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Abstract. We introduce straf , a Scala framework for recording and
optimizing execution traces of an interpreter it is composed with. For
interpreters that satisfy the requirements detailed in this paper, this
composition requires but a small effort from the implementer to result in
a trace-based JIT compiler. We describe the framework, and illustrate its
composition with a Scheme interpreter that satisfies the aforementioned
requirements. We benchmark the resulting trace-based JIT compiler on
a set of Scheme programs. Finally, we implement an optimization to
demonstrate that straf enables further experimentation in the domain.

Keywords: Tracing compilation · JIT compilation · Execution traces ·
Scala

1 Introduction

Trace-based just-in-time (JIT) compilers do not compile an entire program
upfront, but rather start by interpreting the program and identifying its fre-
quently executed loops at run-time. Instructions of these loops are recorded into
a trace. Once one iteration of such a loop has been traced, the compiler com-
piles and optimizes the resulting trace. Subsequent iterations will execute the
optimized trace rather than interpret the original loop, resulting in speed-ups.

Most trace-based JIT compilers are constructed specifically for one particular
programming language. As a result, few efforts are shared between implementa-
tions. The RPython framework for implementing trace-based JIT compilers [1]
addresses this problem. Its runtime is capable of tracing various interpreters.
However, while RPython enables constructing performant language runtimes, its
focus on maximizing performance may hinder its comprehensibility and adapt-
ability. In contrast to RPython our framework does not focus on performance.
Instead, it aims at being minimalistic, comprehensible, and extensible. This way,
our framework should facilitate further experimentation in the domain of trace
recording and optimization.

This paper reports on the integration of our earlier ideas [12] in scala-

am [10], a framework for implementing interpreters from abstract machine
formalizations and using these abstract machines as static program analyzers.
c© Springer International Publishing AG 2017
J. Cunha et al. (Eds.): GTTSE 2015, LNCS 10223, pp. 223–234, 2017.
DOI: 10.1007/978-3-319-60074-1 10
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We call the resulting Scala framework for developing trace-based JIT compil-
ers straf . Its integration into the scala-am static analysis framework specifi-
cally, though not uniquely, enables experimenting with employing static analysis
to improve optimization of traces. The complete implementation of straf is
available at https://github.com/mvdcamme/scala-am.

2 Trace-Based JIT Compilation

Trace-based JIT compilers build on two assumptions: most of a program’s exe-
cution time is spent in loops, and several iterations of the same loop are likely to
take the same path through the program [1]. They therefore optimize frequently
executed loops, whereas method-based JIT compilers optimize methods only.

Trace-based JIT compilers are generally conceived as a mixed-mode execu-
tion involving an interpreter and a compiler. The interpreter executes the pro-
gram and simultaneously profiles loops to identify the frequently executed ones.
When a “hot” loop is detected, the interpreter starts tracing its execution: every
operation performed by the interpreter is recorded. Tracing continues until a
full loop iteration is complete. The compiler optimizes the recorded trace next.
Subsequent iterations of the loop then execute the compiled trace directly. Con-
ditions that held when a trace was recorded might no longer hold when the trace
is executed. Trace-based JIT compilers therefore add guards to the trace to ver-
ify these conditions. When a guard fails, trace execution is aborted and regular
interpretation of the program is resumed.

Figure 1 depicts a Scheme function fact that computes the factorial of 5.
The recursive calls implement a loop that, when recorded, results in the trace
of operations depicted on the right. If the condition evaluated to false
while recording, the trace will feature a guard ActionGuardFalse verifying that
this condition still evaluates to false when the trace is executed. As such, the
trace corresponds to the operations performed by the interpreter in the false-
branch of the if-expression. Should this guard fail at run-time, trace execution
is aborted and interpretation will resume from the other branch.

Fig. 1. A Scheme program containing a loop and part of the corresponding trace.

https://github.com/mvdcamme/scala-am
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3 The STRAF Framework for Building JIT Compilers

straf decouples tracing mechanisms from language semantics through a fixed
tracing machine (or tracer) that can be composed with a developer-provided
abstract machine (or interpreter) [5]. The abstract machine handles regular pro-
gram execution while the tracing machine is responsible for trace recording and
execution. Any abstract machine can be used, on the condition that it satis-
fies the requirements outlined in Sect. 3.1. Section 3.2 describes an example of
such an abstract machine for the Scheme programming language. The tracing
machine of our framework is detailed in Sect. 3.3.

3.1 Requirements on the Abstract Machine

Program State. The interpreter must be conceived as an abstract machine
that transitions between program states. This way, the tracing machine can
easily resume program evaluation from a particular state. Instructions recorded
into a trace then correspond to state transitions. Interpreters modeled after the
ubiquitous CESK machine [6] trivially satisfy this requirement. However, we
do not impose any constraints on the actual state representation used by the
abstract machine.

Tracing Signals. The tracing machine is to record “hot” loops, but their form
is language-specific. For instance, loops are typically implemented using recur-
sive functions in Scheme. For straf to remain language-agnostic, the abstract
machine it is composed with must signal when it has started one loop iteration
by using a SignalStart instance. It must also label each loop-expression in the
program. This enables the tracing machine to associate traces with loops.

Guards. Traces include guard instructions verifying that their control flow
remains valid for a later execution. These too have to be provided by the abstract
machine straf is composed with. Guards need to provide a restart point from
which the abstract machine can resume interpretation when the guard fails dur-
ing trace execution. No other constraints are imposed on their implementation.

Hooks. Finally, the abstract machine must provide the following functions to
the tracing machine:

– A function step which, given a program state, returns a Step instance encap-
sulating the actions to be applied on this state. A Step can also include a
SignalStart.

– An applyActions function which consecutively applies the actions from a
Step to a given program state, and returns the new resulting program state.

– A restart function which takes a program state and the restart point of a
failed guard as input and returns a new program state.
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– An optimize function which, given a previously recorded trace and the pro-
gram state observed at the start of the recording of this trace, returns an
optimized version of this trace. Implementing this function in the abstract
machine ensures that straf itself remains language-agnostic.

3.2 A CESK-based Interpreter for Scheme

Section 4 will compose straf with a Scheme interpreter to evaluate the resulting
trace-based JIT compiler. Being modeled after a CESK-machine [6], this inter-
preter trivially satisfies the requirements of Sect. 3.1. Listing 1 defines its repre-
sentation of program states. Their first component control is either an expression
to be evaluated or a continuation frame to be followed. In addition, their environ-
ment component env maps variables to addresses and their store component sto
maps these addresses to Scheme values. The remaining components are a contin-
uation stack kstack, a value register v containing the value of the last expression
that was evaluated, and a value stack vstack which is used to save lexical envi-
ronments and argument values while evaluating a function call.

To evaluate a composite expression, the interpreter pushes a specific contin-
uation frame onto the continuation stack before evaluating its subexpressions.
This frame is later popped and continued with when the interpreter has finished
evaluating the subexpressions. States corresponding to the latter case feature the
popped continuation frame as their control component instead of an expression.
For those states, the interpreter’s step function (cf. the hooks defined above)
applies a function stepKont on the continuation frame and the contents of the
value register v.

StepEval. Listing 2 illustrates how function stepEval evaluates atomic expres-
sions such as variable references and composite expressions such as function calls.
For variable references, the interpreter returns a list of actions ActionLookupVar
and ActionPopKont which respectively perform the variable lookup, placing the
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resulting value in v, and pop the topmost continuation from the stack. For a
function call, stepEval returns an ActionEvalPush among its actions which
pushes a FrameFunCallFunction onto the continuation stack before proceeding
to evaluate the function subexpression. The pushed continuation encapsulates
the function arguments that need to be evaluated next. For neither expression
a loop is entered. This is communicated to the tracer using the SignalFalse
argument to Step.

StepKont. Listing 3 details how stepKont handles the remainder of function
call evaluation. stepKont takes as input the value v that was just computed
and the frame that was popped from the continuation stack. The former either
corresponds to the invoked procedure (i.e., for FrameFunCallFunction frames)
or to one of the argument values (i.e., for FrameFunCallArg frames). Func-
tion evalFunctionCall is delegated to in either case. If no more arguments
remain to be evaluated, evaluation proceeds to the body of the called procedure
(ActionStepIn). Otherwise, the newly computed value is saved on the value
stack (ActionPushVal) and evaluation proceeds to a new argument by pushing
FrameFunCallArgs onto the continuation stack. As loops are typically imple-
mented through recursion in Scheme, any call can potentially start a loop. The
interpreter therefore sends a SignalStart whenever a procedure is stepped into.
The body of the invoked procedure functions as loop label.

Applying Actions. Listing 4 illustrates how the applyActions hook applies
a single action to a given program state. In the case of an ActionEvalPush, the
interpreter retrieves the expression exp to be evaluated and places a correspond-
ing ControlExp in the control component of the program state. The given frame
is also pushed onto the continuation stack.

Guards. Listing 5 illustrates how the interpreter communicates guard instruc-
tion to the tracer for expressions. An ActionGuardTrue
with a restart point that refers to the alt-expression is emitted when pred eval-
uates to true. Like other actions, this guard will be executed by the applyAction
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function. Should it then find that the expression last evaluated (i.e., pred) did
not evaluate to true, the function calls restart with the current program state
and the restart point encapsulated in the guard. As depicted in the same list-
ing, restart only has to replace the old control component of the state by this
restart point.

3.3 Tracing Machine

The tracing machine controls the mixed-mode execution of the program. Figure 2
depicts the transitions between its three modes: (1) normal interpretation, in
which the interpreter executes the program without interference from the tracing
machine; (2) trace recording, in which the tracer records all actions undertaken
by the interpreter; and (3) trace execution in which the tracing machine executes
a previously recorded trace.

Normal Interpretation. In this mode, the tracer repeatedly asks the abstract
machine to perform a single interpretation step. The tracer updates the cur-
rent program state by applying the actions returned by the interpreter. If these
actions do not include a tracing signal, the tracer continues running in normal
interpretation mode. Upon encountering a SignalStart, the tracing machine
either starts recording a new trace for unseen loops or starts executing a previ-
ously recorded trace for seen loops. Note that, in contrast to the basic scheme
described here, straf does wait for a loop to become hot before tracing it, by
counting how many times a SignalStart was sent for a particular procedure,
and tracing it once a threshold has been reached.
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No tracing signal

Trace
finished

      SignalStart
 [different label]

Guard failed

Normal
Interpretation

   SignalStart
[existing trace]

  SignalStart
[same label]

Trace 
Recording

    SignalStart
[no existing trace]

Trace 
Execution

Fig. 2. Transitions between execution modes of the tracing machine.

Trace Recording. This mode is similar to the previous one, but the trac-
ing machine records all actions communicated by the interpreter into a trace.
The tracer keeps recording these actions until the interpreter sends a new
SignalStart for the loop currently being recorded, as this indicates that one full
iteration of the loop has been completed. The recorded trace is then optimized
via the optimize hook of the interpreter and subsequently stored. Note that if
the interpreter executes an inner loop in the loop being traced, and therefore
sends another SignalStart for that inner loop, this entire loop will be unrolled
in the trace.

Trace Execution. A previously recorded trace is executed by consecutively
applying the actions it is composed of. When the end of the trace has been
reached, the tracer loops back to its beginning. At some point, a guard will fail
and execution of the trace will be aborted. The interpreter’s restart hook is then
called with the restart point of the guard that failed and the current program
state. Execution of the program is resumed under the normal interpretation
mode with the program state that is returned.

4 Evaluation

straf does not aim for top performance, but strives to facilitate experimen-
tation in the domain through the qualities of minimalism, comprehensibility
and extensibility. Our evaluation therefore focuses on whether it is possible to
easily extend the framework, e.g., with new trace optimizations or tracing mech-
anisms. To this end, we compose straf with the Scheme interpreter described
in Sect. 3.2 and implement several optimizations as well as extensions to the
previously described tracing mechanism. Section 4.1 gives a high-level overview
of some trace optimizations and extensions to straf ’s tracing mechanism.
Section 4.2 describes and evaluates one of these optimizations in detail.

4.1 Extensions to STRAF

We have designed and implemented several trace optimizations, including a con-
stant folding [4], a type specialization [2] and a variable folding optimization.



www.manaraa.com

230 M. Vandercammen et al.

These optimizations together span around 400 lines of code1. Additionally, we
have also extended straf with a hot loop detection and a guard tracing mecha-
nism. The former enables straf to detect hot loops by counting the number of
SignalStarts sent for each procedure and only tracing procedures for which the
number of SignalStarts that were sent has crossed some threshold. The latter
makes it possible to not only trace procedures, but also to start tracing from the
point of a guard failure. When the guard fails again at some later point in the exe-
cution, execution jumps to the trace that was recorded for this guard, instead of
resuming normal interpretation. This reduces the performance penalty incurred
for a guard failure, as execution can jump from one optimized trace to another
instead of returning to normal interpretation. These two additional mechanisms
were completed in only 100 lines of code2.

4.2 Continuation Stack Optimization

We now describe and evaluate an additional trace optimization, the continua-
tion stack optimization, which eliminates all pairs of actions from a trace that
push and pop a continuation frame. This is sound because continuation frames
only affect the control flow, which is fixed for a particular trace. Care must be
taken, however, that no guard instruction is located between these actions. The
continuation stack must be kept up-to-date if normal interpretation might be
resumed after a guard failure. In practice, applying this continuation stack opti-
mization often reduces the length of a trace by up to 25%. The implementation
of this optimization spans about 50 lines of code, and was completed in about an
hour’s effort. We evaluate this optimization on a set of several programs ranging
from just two lines of code to around 240. These stem from the benchmark suite
included with the scala-am framework on top of which straf is implemented.

Evaluation. Figure 3 depicts the effectiveness of the continuation stack opti-
mization. It shows the number of continuation stack operations that are applied
throughout the execution of a benchmark as a fraction of the number of contin-
uation stack operations that are applied when the optimization is not applied on
the collected traces. This optimization drastically reduces the number of such
applications, by up to 95% in some cases.

We also evaluate the optimization in terms of the performance improvement
it brings to the compiler. We conducted this evaluation on an Intel I7–4870HQ
CPU at 2.50 GHz with 6 MB cache and 16 GB of RAM. The machine ran 64 bit
OS X 10.11.6 and Scala 2.11.7. Each program was executed thirty times, with
each run on a separate JVM; measurements only started after JVM warm-up
was completed. Figure 4 shows the median execution times, along with its 95%
confidence interval, of the programs when traces were collected and executed,
1 https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/

SchemeTraceOptimizer.scala.
2 https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/

SchemeTracer.scala.

https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/SchemeTraceOptimizer.scala
https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/SchemeTraceOptimizer.scala
https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/SchemeTracer.scala
https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/SchemeTracer.scala
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Fig. 3. Number of continuation stack operations executed, normalized with respect to
the unoptimized execution.

Fig. 4. Median execution time of the benchmarks when traces are not optimized.

but not optimized. These numbers serve as the baseline with respect to which
the effectiveness of the continuation stack optimization is compared. Figure 5
shows the execution time of these same benchmarks, normalized to the baseline
execution time and with the 95% confidence interval included.

When the continuation stack optimization is applied, performance conclu-
sively improves in 5 out of 14 cases. In the remaining cases, it is likely that
the traces are either too short or the hot loop detection mechanism prioritized
tracing a loop which was afterwards not executed often enough. In both cases,
the overhead of tracing and optimizing negates any improvement made by the
optimization.
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Fig. 5. Median execution time of the benchmarks with just the continuation stack
optimization enabled, normalized with respect to the baseline results.

5 Related Work

We reported an earlier version of the core principles behind the separation of the
tracer and the interpreter in prior work [12]. That work relied on a formalization
and a Scheme implementation of the framework. This paper extends that work by
transposing the described ideas to the scala-am framework [10], by specifying
its implementation instead of offering a formal model, by describing optimization
strategies for traces and by evaluating straf via a set of benchmarks detailing
its performance.

Several widely-used trace-based JIT compilers have been deployed, such as
HotPath [8], TraceMonkey [7], Tamarin-Tracing [3]. However, these compilers
all execute one particular language and cannot be composed with a variety of
different interpreters.

The RPython framework is a meta-compilation framework that applies the
technique of meta-tracing [1]: instead of tracing the execution of a program
directly, a meta-tracer traces the execution of an interpreter while this inter-
preter executes the program. Similarly to straf , RPython thus enables lan-
guage implementers to provide a regular interpreter, annotated with certain
hints to guide tracing and optimization, to benefit from the advantages of trace-
based compilation without having to construct a dedicated JIT compiler for the
language. RPython greatly reduces the engineering effort required by language
implementers and is also successful in lifting the performance of the meta-traced
interpreter to the same order of magnitude than a dedicated JIT compiler [9].
However, the complexity of RPython and its focus on performance makes it
less suited for experimenting with novel trace recording or trace optimization
strategies. In contrast, straf focuses exclusively on providing a minimalistic
yet extensible framework that facilitates studying of and experimenting with
trace-based compilation strategies.
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6 Conclusion and Future Work

We have introduced the straf framework for recording and optimizing execu-
tion traces of an interpreter it is composed with. For interpreters that satisfy a
limited set of requirements, this composition results in a trace-based JIT com-
piler. straf does not aim to generate trace-based JIT compilers that outperform
existing ones, but to facilitate further experimentation with trace recording and
trace optimization. To this end, it achieves low coupling between tracing mech-
anisms and language semantics.

straf is the embodiment of our earlier ideas on JIT compilation [12] into
the scala-am framework [10] for implementing interpreters as abstract machines
and for deriving static analyses from these interpreters. We are currently inves-
tigating whether trace-based JIT compilation can benefit from whole-program
static analysis, by providing information about the program that lies beyond the
boundaries of the trace. We have recently described an approach [11] for using a
whole-program static analysis to find constant variables in a program and using
this information to improve trace optimization: if the compiler knows that a vari-
able will remain constant throughout the program’s execution, it can replace a
lookup of the variable in the trace by its value as it was observed during trace
recording. Our approach enables detecting more constants than would be found
by other trace-based compilers because these compilers only consider the local
part of the program that is actually traced and do not look beyond the bound-
aries of this trace. By integrating straf into the scala-am framework, we can
construct an abstract machine based interpreter for a language, derive a static
analysis from it by using the scala-am framework and couple the interpreter to
the tracing machine. Using the same abstract machine for both functions makes
it possible to easily alternate between these functions, enabling us to perform
static analysis over parts of the program at run time. This in turn increases
precision of the static analysis, as we can include observed runtime values in the
program analysis instead of having to predict these statically. The minimalistic
but extensible implementation of straf facilitates these kinds of experiments
in hybrid trace optimizations.

References

1. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: Pypy’s
tracing JIT compiler. In: Proceedings of the 4th ICOOOLPS Workshop (2009)

2. Chang, M., Bebenita, M., Yermolovich, A., Gal, A., Franz, M.: Efficient just-in-
time execution of dynamically typed languages via code specialization using pre-
cise runtime type inference. Technical report ICS-TR-07-10, University of Irvine,
Department of Computer Science (2007)

3. Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich,
B., Franz, M.: Tracing for web 3.0: trace compilation for the next generation web
applications. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
VEE Conference (2009)

4. Corporation, N.: Constant folding. http://www.compileroptimizations.com/
category/constant folding.htm. Accessed 24 May 2016

http://www.compileroptimizations.com/category/constant_folding.htm
http://www.compileroptimizations.com/category/constant_folding.htm


www.manaraa.com

234 M. Vandercammen et al.

5. Felleisen, M., Friedman, D.P.: Control Operators, the SECD-machine, and the λ-
calculus. Indiana University, Computer Science Department (1986)

6. Felleisen, M., Friedman, D.P.: A calculus for assignments in higher-order languages.
In: Proceedings of the 14th ACM SIGACT-SIGPLAN POPL Symposium (1987)

7. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R.,
Kaplan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.W.,
Reitmaier, R., Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type
specialization for dynamic languages. In: Proceedings of the 30th ACM SIGPLAN
PLDI Conference (2009)

8. Gal, A., Probst, C.W., Franz, M.: Hotpathvm: an effective JIT compiler for
resource-constrained devices. In: Proceedings of the 2nd International VEE Con-
ference (2006)

9. Marr, S., Ducasse, S.: Tracing vs. partial evaluation: comparing meta-compilation
approaches for self-optimizing interpreters. In: Proceedings of the 2015 ACM Inter-
national OOPSLA Conference (2015)
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